Math, asked by kashmiri8479, 6 months ago

find second and third terms of an A.P whose first term (t1)=-2 and common difference (d)=-2​

Answers

Answered by wwweliasgeorgesherry
1

Answer:

a=2

d=-2

second term=a+d=2+-2=0

third term=a+2d=2+2x-2=-2

Answered by Anonymous
6

GIVEN

  • First term of AP = -2
  • Common difference(d) = -2

To Find

Second and third term of AP.

SOLUTION

We know that,

\large{\red{\underline{\boxed{\bf{a_{n}=a+(n-1)d}}}}}

where,

  • a is the first term
  • d is the common difference
  • n is the respective term

According to the question,

\large{\red{\underline{\underline{\sf{1))\:Second\:term\:of\:AP\::-}}}}}

here,

  • a = -2
  • d = -2
  • n = 2

Putting the values,

\large\implies{\sf{a_{n}=a+(n-1)d}}

\large\implies{\sf{a_{2}=(-2)+(2-1)\times(-2)}}

\large\implies{\sf{a_{2}=(-2)+1\times(-2)}}

\large\implies{\sf{a_{2}=(-2)+(-2)}}

\large\implies{\sf{a_{2}=-2-2}}

\large\therefore\boxed{\bf{\red{a_{2}=-4}}}

\large{\red{\underline{\underline{\sf{2))\:Third\:term\:of\:AP\::-}}}}}

here,

  • n = 3

Putting the values,

\large\implies{\sf{a_{n}=a+(n-1)d}}

\large\implies{\sf{a_{3}=(-2)+(3-1)\times(-2)}}

\large\implies{\sf{a_{3}=(-2)+2\times(-2)}}

\large\implies{\sf{a_{3}=(-2)+(-4)}}

\large\implies{\sf{a_{3}=-2-4}}

\large\therefore\boxed{\bf{\red{a_{3}=-6}}}

Therefore,

\large{\red{\underline{\boxed{\therefore{\bf{1))\:Second\:term\:of\:AP\:is\:-4.}}}}}}

\large{\red{\underline{\boxed{\therefore{\bf{2))\:Third\:term\:of\:AP\:is\:-6.}}}}}}

Similar questions