Find separation between A and B after 3 sec is 2 balls with initial speed 0 and 3m/s respectively are thrown from a building.
Expanation needed
Answers
Answer:
Substitute the values in equation ,
For finding the ball (A) :
\begin{gathered}\begin{gathered}\sf\implies \: s = u_{1} t+ \frac{1}{2} \: g {t}^{2} \\ \\ \implies\sf \: 0 \times 3 + \frac{1}{2} \times 10 \times {3}^{2} \\ \\ \sf\implies \: 0 + \frac{1}{2} \times 10 \times 9 \\ \\ \sf\implies \: 5 \times 9 \\ \\ \bf \implies 45\end{gathered} \end{gathered}⟹s=u1t+21gt2⟹0×3+21×10×32⟹0+21×10×9⟹5×9⟹45
ie, S1 = 45 m
For Ball ( B ) :
\begin{gathered}\begin{gathered}\sf\implies \: s = u_{2} \: t \: + \frac{1}{2} \: g \: {t}^{2} \\ \\ \sf\implies \: 3 \times 3 + \frac{1}{2} \times 10 \times {3}^{2} \\ \\ \sf\implies \: 9 + \frac{1}{2} \times 10 \times 9 \\ \\ \sf\implies \: 9 + 5 \times 9 \\ \\ \bf\implies \: 54\end{gathered} \end{gathered}⟹s=u2t+21gt2⟹3×3+21×10×32⟹9+21×10×9⟹9+5×9⟹54
ie, S2 = 54 m
Then, To find the separation between them = S2 - S1
\begin{gathered}\begin{gathered}\bullet \: \: \sf s_{1} \: = 45 \\ \sf\bullet \: \: s_{2} \: = 54\\ \\ \sf \: s_{2} - s_{1} \: = 54 - 45 \\ \sf \: = 9 \: m\end{gathered} \end{gathered}∙s1=45∙s2=54s2−s1=54−45=9m
Answer:
Substitute the values in equation ,
For finding the ball (A) :
\begin{gathered}\begin{gathered}\sf\implies \: s = u_{1} t+ \frac{1}{2} \: g {t}^{2} \\ \\ \implies\sf \: 0 \times 3 + \frac{1}{2} \times 10 \times {3}^{2} \\ \\ \sf\implies \: 0 + \frac{1}{2} \times 10 \times 9 \\ \\ \sf\implies \: 5 \times 9 \\ \\ \bf \implies 45\end{gathered} \end{gathered}
⟹s=u
1
t+
2
1
gt
2
⟹0×3+
2
1
×10×3
2
⟹0+
2
1
×10×9
⟹5×9
⟹45
ie, S1 = 45 m
For Ball ( B ) :
\begin{gathered}\begin{gathered}\sf\implies \: s = u_{2} \: t \: + \frac{1}{2} \: g \: {t}^{2} \\ \\ \sf\implies \: 3 \times 3 + \frac{1}{2} \times 10 \times {3}^{2} \\ \\ \sf\implies \: 9 + \frac{1}{2} \times 10 \times 9 \\ \\ \sf\implies \: 9 + 5 \times 9 \\ \\ \bf\implies \: 54\end{gathered} \end{gathered}
⟹s=u
2
t+
2
1
gt
2
⟹3×3+
2
1
×10×3
2
⟹9+
2
1
×10×9
⟹9+5×9
⟹54
ie, S2 = 54 m
Then, To find the separation between them = S2 - S1
\begin{gathered}\begin{gathered}\bullet \: \: \sf s_{1} \: = 45 \\ \sf\bullet \: \: s_{2} \: = 54\\ \\ \sf \: s_{2} - s_{1} \: = 54 - 45 \\ \sf \: = 9 \: m\end{gathered} \end{gathered}
∙s
1
=45
∙s
2
=54
s
2
−s
1
=54−45
=9m