Math, asked by aasthasinghbst0016, 24 days ago

find simple interest​

Attachments:

Answers

Answered by mathdude500
7

Question :-

Ramesh lent out ₹ 5000 to Ram for 2 years at a certain rate of simple interest and lent out ₹ 600 to Shyam for 5 years at the same rate of interest. If he gets ₹ 455 in all as interest from both of them. Find the rate of interest.

\large\underline{\sf{Solution-}}

Case :- 1

Ramesh lent out ₹ 5000 to Ram for 2 years at a certain rate of simple interest.

Let assume that rate of interest be r % per annum.

So, we have

Principal, P = ₹ 5000

Time, n = 2 years

Rate of interest = r % per annum

We know,

Simple interest ( SI ) received on a certain sum of money of ₹ P invested at the rate of r % per annum for n years is given by

\boxed{\sf{  \: \: SI \:  =  \:  \frac{P \:  \times  \: r \:  \times  \: n}{100}  \:  \: }} \\

So, on substituting the values, we get

\rm \: SI_{1} \:  =  \: \dfrac{5000 \times r \times 2}{100}  \\

\rm\implies \:\rm \: SI_{1} \:  =  \: 100r -  -  - (1)  \\

Case :- 2

Ramesh lent out ₹ 600 to Shyam for 5 years at the same rate of simple interest as in case 1.

So, we have

Principal, P = ₹ 600

Time, n = 5 years

Rate of interest = r % per annum

So,

\rm \: SI_{2} \:  =  \: \dfrac{600 \times r \times 5}{100}  \\

\rm\implies \:\rm \: SI_{2} \:  =  \: 30r -  -  - (2)  \\

Now, According to statement, he received ₹ 455 as interest from both of them.

\rm \:SI_{1} +  SI_{2}  = 455 \\

\rm \: 100r + 30r = 455 \\

\rm \: 130r = 455 \\

\rm\implies \:r \:  =  \: 3.5 \: \% \: per \: annum

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Amount received on a a certain sum of money of ₹ P invested at the rate of r % per annum for n years is given by

\boxed{\sf{  \: \: Amount \:  =  \: P \: \bigg[\dfrac{100 + rn}{100} \bigg] \:  \: }} \\

Also,

\boxed{\sf{  \: \: P \:  =  \:  \frac{SI \times 100}{r \times n}  \:  \: }} \\

\boxed{\sf{  \: \: r \:  =  \:  \frac{SI \times 100}{P \times n}  \:  \: }} \\

\boxed{\sf{  \: \: n\:  =  \:  \frac{SI \times 100}{P \times r}  \:  \: }} \\

Answered by XxLUCYxX
2

Part 1 of the question :-

 \sf \: Principal \:=\:₹\:5000 \\ \\  \sf \: Time\:=\:2\:years

 \sf \color{red} \boxed{Simple\: Intrest\:=\: \frac{P\:\times\:R\:\times\:T}{100}}

Applying the values,

 \sf Simple\: Intrest\:=\: \frac{5\cancel{000}\:\times\:R\:\times\:2}{1\cancel{00}} \\

 \sf\implies\: Simple\:Intrest\:=\:100R \:  \: \:  \:  \: \color{aqua} (   \color{aqua}\leadsto \: equation \: 1)

Part 2 of the question :-

 \sf \: Principal\:=\:₹\:600 \\ \\  \sf \: Time\:=\:5\:years

 \sf \: SI_2\:=\: \frac{P \:  \times  \: R  \: \times  \: T}{100}  \\

 \sf \: SI_2\:=\: \frac{6 \cancel{00} \:  \times  \: R  \: \times  \: 5}{1 \cancel{00}}  \\

 \implies \: SI_2\:=\:30R

 \sf \: He \: received \: ₹ \: 455 \: as \: intrest \: fo r\: both \: of \: them \: (given).

 \sf \: So \: putting \: the \: values \: of \: SI\:and\:SI_2\:and\: equating \:it\:by\:₹\:455.

 \sf \implies \: 100r\:+\:30r\:=\:455 \\  \\  \sf \implies \:130r \:  =  \: 455 \\  \\  \sf \implies \:r \:  =  \frac{ \cancel{455}^{ \:  \: 3.5} }{ \cancel{130}}  \\  \\  \implies \: r \:  =  \: 3.5 \: \% \:

 \sf \therefore \:Rate\:of\:Intrest\:=\:3.5\: \% \:or \: 3\: \frac{1}{2} \: \%\:.

 \color{lime}\rule{200000000 pt}{2pt}

Similar questions