Physics, asked by nakrasameer18, 3 months ago

find ∫sin(2πx + 30°)dx​

Answers

Answered by BrainlyPopularman
36

GIVEN :

A Function sin(2πx + 30°).

TO FIND :

• Integration with respect to 'x' of given function = ?

SOLUTION :

• Let –

 \\ \implies \bf \mathbb{A} \:  =  \int  \sin(2\pi x +  {30}^{ \circ} ).dx \\

• Let's put –

 \\ \longrightarrow \:  \:  \bf 2\pi x +  {30}^{ \circ}  = t\\

 \\ \longrightarrow \:  \:  \bf 2\pi dx =dt\\

 \\ \longrightarrow \:  \:  \bf dx = \dfrac{dt}{2\pi}\\

 \\ \implies \bf \mathbb{A} \:  =  \int  \sin(t) \dfrac{dt}{2\pi} \\

 \\ \implies \bf \mathbb{A} \:  =  \dfrac{1}{2\pi}  \int  \sin(t) dt \\

• We know that –

 \\ \:  \: \bigstar \:  \:  \:  \:  \pink{\boxed{ \bf\int  \sin(t) dt = -  \cos(x) + c }}\\

• So that –

 \\ \implies \bf \mathbb{A} \:  =  -  \dfrac{1}{2\pi} \cos(t) + c\\

• Now , Replace 't' –

 \\ \implies  \green{\large { \boxed{\bf \mathbb{A} \:  =  -  \dfrac{1}{2\pi} \cos(2\pi x +  {30}^{\circ} ) + c}}}\\

• Hence –

 \\ \implies  \red{\large { \boxed{\bf \int  \sin(2\pi x +  {30}^{ \circ} ).dx \:  =  -  \dfrac{1}{2\pi} \cos(2\pi x +  {30}^{\circ} ) + c}}}\\

Similar questions