Math, asked by dhruvjain582, 1 year ago

find
sin60 / 1- cos60 + cos60 / 1-sin60

Answers

Answered by unknown2429
1

 \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{1 -  \sin( \alpha ) }

 \frac{ \sin( \alpha )(1 +  \cos( \alpha ) ) }{1 -  { \cos( \alpha ) }^{2} }  +  \frac{ \cos( \alpha ) (1 +  \sin( \alpha ) )}{1 -  { \sin( \alpha ) }^{2} }

 \frac{ \sin( \alpha ) (1 +  \cos( \alpha ) )}{ { \sin( \alpha ) }^{2} }  +  \frac{ \cos( \alpha ) (1 +  \sin( \alpha ) )}{ { \cos( \alpha ) }^{2} }

 \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  +  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }

1 +  \tan( \alpha )  + 1 +  \cot( \alpha )

2 +  \tan( \alpha )  +  \cot( \alpha )

Now, we know, if

 \alpha  = 60 \: degree

then,

 \tan( \alpha )  =  \sqrt{3}  =  \frac{3}{ \sqrt{3} }

 \cot( \alpha )  =  \frac{1}{ \sqrt{3} }

so,

2 +  \tan( \alpha )  +  \cot( \alpha )

2 +  \frac{3}{ \sqrt{3} }  +  \frac{1}{ \sqrt{3} }

2 +  \frac{4}{ \sqrt{3} }

2 +  \frac{4 \sqrt{3} }{3}

so, putting

 \sqrt{3}  = 1.732

we get,

2 +  \frac{4 \times 1.732}{3}

2 + 4 \times 0.544

2 + 2.176

4.176 \: {approx}

Hope this helps you...

Similar questions