Math, asked by harshking1354, 7 months ago

Find sinA+ sin(π+A) + sin(2π+A) + sin(3π+A)+.......................... upto 2021 term?

प्लीज टेल मी द आंसर ​

Answers

Answered by murtuzaqdr1
4

Answer:

sinA-SinA+sinA-sinA+......sinA-sinA(2020 terms)+sinA=sinA

Answered by shadowsabers03
15

Given to find,

\displaystyle\longrightarrow S=\underbrace{\sin A+\sin(\pi+A)+\sin(2\pi+A)+\,\dots\,+\sin(2020\pi+A)}_{2021\ terms}

Or we can say that,

\displaystyle\longrightarrow S=\sum_{r=0}^{2020}\sin(r\pi+A)

We're going to divide this sum into two sums - one contains the terms in which value of r is odd, and the other contains those in which value of r is even.

The sum of terms in this sum S, where r has odd value, is,

\displaystyle\longrightarrow S_o=\sin(\pi+A)+\sin(3\pi+A)+\sin(5\pi+A)+\,\dots\,+\sin(2019\pi+A)

\displaystyle\longrightarrow S_o=\sum_{r=1}^{1010}\sin((2r-1)\pi+A)

The sum of terms in this sum S, where r has even value, is,

\displaystyle\longrightarrow S_e=\sin A+\sin(2\pi+A)+\sin(4\pi+A)+\,\dots\,+\sin(2020\pi+A)

\displaystyle\longrightarrow S_e=\sum_{r=0}^{1010}\sin(2r\pi+A)

Hence,

\displaystyle\longrightarrow S=S_o+S_e

\displaystyle\longrightarrow S=\sum_{r=1}^{1010}\sin((2r-1)\pi+A)+\sum_{r=0}^{1010}\sin(2r\pi+A)

\displaystyle\longrightarrow S=\sum_{r=1}^{1010}\sin(2\pi r-\pi+A)+\sum_{r=0}^{1010}\sin(2\pi r+A)

\displaystyle\longrightarrow S=\sum_{r=1}^{1010}\sin(2\pi r-(\pi-A))+\sum_{r=0}^{1010}\sin(2\pi r+A)

Since \sin(2\pi n+x)=\sin x where n\in\mathbb{Z},

\displaystyle\longrightarrow S=\sum_{r=1}^{1010}\sin(-(\pi-A))+\sum_{r=0}^{1010}\sin A

Since \sin(-x)=-\sin x,

\displaystyle\longrightarrow S=\sum_{r=1}^{1010}-\sin(\pi-A)+\sum_{r=0}^{1010}\sin A

\displaystyle\longrightarrow S=-\sum_{r=1}^{1010}\sin(\pi-A)+\sum_{r=0}^{1010}\sin A

Since \sin(\pi-x)=\sin x,

\displaystyle\longrightarrow S=-\sum_{r=1}^{1010}\sin A+\sum_{r=0}^{1010}\sin A

Since \displaystyle\sum_{r=a}^bc=(b-a+1)c,

\displaystyle\longrightarrow S=-(1010-1+1)\sin A+(1010-0+1)\sin A

\displaystyle\longrightarrow S=-1010\sin A+1011\sin A

\displaystyle\longrightarrow S=(-1010+1011)\sin A

\displaystyle\longrightarrow\underline{\underline{S=\sin A}}

Hence sin A is the answer.

Similar questions