Math, asked by sk815817, 7 months ago

Inqualitites solve this please​

Attachments:

Answers

Answered by shadowsabers03
3

We're given the inequality,

\longrightarrow ||x-1|-2|<5

\longrightarrow ||x-1|-2|\in(-\infty,\ 5)

Since |x|\in[0,\ \infty)\quad\forall x\in\mathbb{Z},

\longrightarrow ||x-1|-2|\in(-\infty,\ 5)\cap[0,\ \infty)

\longrightarrow ||x-1|-2|\in[0,\ 5)

On removing the outer modulus, we get,

\longrightarrow |x-1|-2\in(-5,\ 5)

because |x|\in[0,\ a)\,\iff\,x\in(-a,\ a).

\longrightarrow |x-1|\in(-5+2,\ 5+2)

\longrightarrow |x-1|\in(-3,\ 7)

As we said earlier, since |x|\in[0,\ \infty)\quad\forall x\in\mathbb{Z},

\longrightarrow |x-1|\in(-3,\ 7)\cap[0,\ \infty)

\longrightarrow |x-1|\in[0,\ 7)

On removing the modulus,

\longrightarrow x-1\in(-7,\ 7)

\longrightarrow x\in(-7+1,\ 7+1)

\longrightarrow\underline{\underline{x\in(-6,\ 8)}}

This is the solution of the inequality.

Similar questions