Math, asked by ronnie02, 3 months ago




Find Sn and S infty of the series

1/1x2x3 + 1/2x3x4 + 1/3x4x5

Answers

Answered by Agamsain
5

Question :-

We need to find general expression for,

\longmapsto S_n=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\,\dots\,+\dfrac{1}{n(n+1)}

or,

\displaystyle\longmapsto S_n=\sum_{k=1}^n\dfrac{1}{k(k+1)}

\displaystyle\longmapsto S_n=\sum_{k=1}^n\dfrac{(k+1)-k}{k(k+1)}

\displaystyle\longmapsto S_n=\sum_{k=1}^n\left[\dfrac{1}{k}-\dfrac{1}{k+1}\right]

\displaystyle\longmapsto S_n=\sum_{k=1}^n\dfrac{1}{k}-\sum_{k=1}^n\dfrac{1}{k+1}

\displaystyle\longmapsto S_n=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\,\dots\,+\dfrac{1}{n}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\,\dots\,+\dfrac{1}{n}+\dfrac{1}{n+1}\right)

\displaystyle\longmapsto S_n=1-\dfrac{1}{n+1}

\displaystyle\longmapsto\underline{\boxed{S_n=\dfrac{n}{n+1}\qquad \star}}

For n\to\infty,

\displaystyle\longmapsto S_\infty=\lim_{n\to\infty}\dfrac{n}{n+1}

\displaystyle\longmapsto S_\infty=\lim_{n\to\infty}\dfrac{1}{\left(\dfrac{n+1}{n}\right)}

\displaystyle\longmapsto S_\infty=\lim_{n\to\infty}\dfrac{1}{\left(1+\dfrac{1}{n}\right)}

\displaystyle\longmapsto S_\infty=\dfrac{1}{1+0}\quad\quad\left[\because\lim_{n\to\infty}\dfrac{1}{n}=0\right]

\displaystyle\longmapsto\underline{\boxed{S_\infty=1}}

Similar questions