Math, asked by gadha44, 1 year ago

find square of 3a-4b​

Answers

Answered by BloomingBud
12

Answer:

\bf (3a-4b)^{2}\\\\\bf unsing\:\: identity\:\: (a-b)^{2}=a^{2}-2ab+b^{2}

\bf So,\\\\ here \:\: (3a) \:\: is \:\: a\\\\ and \:\:(4b) \:\: is \:\: b

So,

\bf (3a-4b)^{2} \\\\= (3a)^{2} - 2 \times (3a) \times (4b) +(4b)^{2} \\\\= 9a^{2} - 24ab + 16b^{2}

Hence.

\bf (3a-4b)^{2}= 9a^{2} - 24ab + 16b^{2}

More information :

\bf Proving \:\: that \:\: identity \\\\(a-b)^{2}= (a-b) (a-b) \\\\=a(a-b) -b (a-b) \\\\= a^{2} - ab - ab + b^{2}\\\\=a^{2} - 2ab + b^{2}

Answered by awsomegirl
4

\huge\mathtt\red{Answer}

\begin{lgathered}\bf (3a-4b)^{2}\\\\\bf unsing\:\: identity\:\: (a-b)^{2}=a^{2}-2ab+b^{2}\end{lgathered}

\begin{lgathered}\bf So,\\\\ here \:\: (3a) \:\: is \:\: a\\\\ and \:\:(4b) \:\: is \:\: b\end{lgathered}

\begin{lgathered}\bf (3a-4b)^{2} \\\\= (3a)^{2} - 2 \times (3a) \times (4b) +(4b)^{2} \\\\= 9a^{2} - 24ab + 16b^{2}\end{lgathered}

\begin{lgathered}\bf Proving \:\: that \:\: identity \\\\(a-b)^{2}= (a-b) (a-b) \\\\=a(a-b) -b (a-b) \\\\= a^{2} - ab - ab + b^{2}\\\\=a^{2} - 2ab + b^{2}\end{lgathered}

Similar questions