find square root of 3 + 2√10i
Answers
Answered by
1
Answer:
√5 + √2i or -√5 - √2i
Step-by-step explanation:
Let us assume that square root of 3 + 2√10i
Can be written as a + bi
Now,
=> 3 + 2√10i = a + bi
On squaring both sides
=> (3 + 2√10i) = (a + bi) ²
=> a² + (bi) ² + 2abi = 3 + 2√10i
=> a² + b²(-1) + 2ab(i) = 3 + 2√10i
=> (a² - b²) + 2ab(i) = 3 + 2√10i
Equating both real and imaginary parts
=> a² - b² = 3 - - - (1)
=> 2ab = 2√10
=> ab = √10 - - - (2)
=> b = √10/a
Putting the value of b
=> a² - (√10/a)² = 3
=> a² - 10/a² = 3
=> a⁴ - 3a² - 10 = 0
=> a⁴ - 5a² + 2a² - 10 = 0
=> a²(a² - 5) + 2(a² - 5) = 0
=> (a² - 5)(a² + 2) = 0
But a is real so
a = √5
=> b = √10/√5
=> b = √2
So square root of 3 + 2√10i is
Either
√5 + √2i or -√5 - √2i
Similar questions