find square root of Z is equal to 5 - 12i
Answers
Answer:
Z = 5 - 12i
Sol:
√(5 - 12i) = a + bi
squaring both the side
5 - 12i = a² + 2abi + b²i²
5 - 12i = (a² - b²) + 2ab .............{i² = -1}
Comparing real and imaginary parts
a² - b² = 5........1 ; 2abi = -12i
2ab = -12
Now, (a²+b²) = (a² - b²) + (2ab)²
= (5)² + (-12)²
= 25 + 144
= 169
a² + b² = √(169)
a²+ b² = 13.......................2
Adding 1 and 2
a² - b² = 5
+ a² + b² = 13
_____________
2a² = 18
a² = 9
a = 3,,
substituting a = 3 in , 2ab = -12
2ab = -12
2×3×b= -12
6b = -12
b = -2,,
√(5 - 12i) = a + ib
√(5 - 12i) = 3 + -2i)
√(5 - 12i) = 3 - 2i is Answer
Given:
A complex number 5-2i
To Find:
Square root of 5-12i
Solution:
We know that,
Let
On squaring both the sides, we get
On comparing both the sides, we get
Constant Term
Coefficient of i
Now, on putting value of x in (1), we get
Since, x² can't be negative
So, x²≠ -4
x²= 9
x= ±3
When x=3, y= -2
x= -3, y= 2
So, required complex number is 3-2i and -3+2i.
Hence, square root of 5-12i is 3-2i or -3+2i.