Math, asked by valancy6090, 10 months ago

Find sum and product of roots of the quadratic equation x^2-4th root 3*x+9=0

Answers

Answered by Abhishek474241
2

✪AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A polynomial
  • X²-4√3x+9

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Factors of the polynomial

{\sf{\pink{\underline{\Large{Explanation}}}}}

  • X²-4√3x+9

  • we have to spilt the middle term in such a way that the product become 9 and sum become -4√3

=>X²-4√3x+9

=>X²-3√3x-√3x+9

=>x(x-3√3)-√3(x-3√3)

=>(x-3√3)(X-√3)

=>X=3√3,√3

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\rightarrow\tt\alpha{+}\beta{=}3\sqrt{3}+{\sqrt{3}}=4{\sqrt{3}}

&

\rightarrow\tt\alpha{\times}\beta{=}9

Here,

a=1

b=-4√3

C=9

\rightarrow\tt\alpha{+}\beta{=}\dfrac{-4{\sqrt{3}}}{1}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{9}{1}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Similar questions