Math, asked by ThisUsernamesTooLong, 2 days ago

Find sum of series upto n terms -

\dfrac{ {1}^{3} }{1} + \dfrac{ {1}^{3} + {3}^{3} }{1 + 3} + \dfrac{ {1}^{3} + {3}^{3} + {5}^{3} }{1 + 3 + 5} + \dots

Answers

Answered by MrImpeccable
24

ANSWER:

To Find:

 \text{Value of:} \dfrac{1^3}{1}+\dfrac{1^3+3^3}{1+3}+\dfrac{1^3+3^3+5^3}{1+3+5}+\dots n\:terms

Solution:

We need to find the value of,

\implies \dfrac{1^3}{1}+\dfrac{1^3+3^3}{1+3}+\dfrac{1^3+3^3+5^3}{1+3+5}+\dots n\:terms

The \sf k^{th} term will be:

\implies T_{k}=\dfrac{1^3+3^3+5^3+\dots+k^3}{1+3+5+\dots +k}

We know that,

\hookrightarrow 1^3+3^3+5^3+\dots+n^3=n^2(2n^2-1)

\hookrightarrow 1+3+5+\dots+n= n^2

So,

\implies\sf T_{k}=\dfrac{1^3+3^3+5^3+\dots+ k^3}{1+3+5+\dots+k}

\implies \sf T_{k}=\dfrac{k^2\!\!\!\!/\:(2k^2-1)}{k^2\!\!\!\!/}

\implies \sf T_{k}=2k^2-1

Now, we have our \sf k^{th} term.

So, the required sum is,

\displaystyle\implies \sf \sum\limits_{k=1}^{n} T_k

\displaystyle\implies \sf \sum\limits_{k=1}^{n} (2k^2-1)

\displaystyle\implies \sf 2\sum\limits_{k=1}^{n}k^2- \sum\limits_{k=1}^{n} 1

We know that,

\hookrightarrow \sf \sum\limits_{k=1}^{n}k^2=\dfrac{n(n+1)(2n+1)}{6}

\hookrightarrow \sf \sum\limits_{k=1}^{n}1=n

\displaystyle\implies \sf 2\sum\limits_{k=1}^{n}k^2- \sum\limits_{k=1}^{n} 1

\displaystyle\implies \sf 2\!\!\!/\:\dfrac{n(n+1)(2n+1)}{6\!\!\!/\:_{3}}-n

\displaystyle\implies \sf \dfrac{n(n+1)(2n+1)}{3}-n

\displaystyle\implies \sf \dfrac{n(n+1)(2n+1)-3n}{3}

\displaystyle\implies \sf \dfrac{(n^2+n)(2n+1)-3n}{3}

\displaystyle\implies \sf \dfrac{2n^3+n^2+2n^2+n-3n}{3}

\displaystyle\implies \sf \dfrac{2n^3+3n^2-2n}{3}

\displaystyle\implies \sf \dfrac{n(2n^2+3n-2)}{3}

\displaystyle\implies \sf \dfrac{n(2n^2+4n-n-2)}{3}

\displaystyle\implies \sf \dfrac{n[2n(n+2)-1(n+2)]}{3}

\displaystyle\implies \sf \dfrac{n(2n-1)(n+2)}{3}

So,

\displaystyle\implies \sf \dfrac{n(n+2)(2n-1)}{3}

Hence, the required sum is:

\displaystyle\implies \bf \dfrac{n(n+2)(2n-1)}{3}

Similar questions