Math, asked by Ayushp4, 8 months ago

Find sum of the series (1+2)+(1+2+2²)+(1+2+2²+2³)+.... upto n terms.

Answers

Answered by akashkumar03847
1

Answer:

The n

th

term of the numerator =n(n+1)

2

=n

2

+2n

2

+n

And n

th

term of the denominator =n

2

(n+1)=n

3

+n

2

1

2

×2+2

2

×3+...+n

2

×(n+1)

1×2

2

+2×3

2

+...+n×(n+1)

2

=

k−1

n

a

k

k−1

n

a

k

=

k−1

n

(k

3

+k

2

)

k−1

n

(k

3

+k

2

+k)

...(1)

Here,

k−1

n

(k

3

+2k

2

+k)

=

4

n

2

(n+1)

2

+

6

2n(n+1)(2n+1)

+

2

n(n+1)

=

2

n(n+1)

[

2

n(n+1)

+

3

2

(2n+1)+1]

=

2

n(n+1)

[

6

3n

2

+3n+8n+4+6

]

=

12

n(n+1)

[3n

2

+11n+10]

=

12

n(n+1)

[3n

2

+6n+5n+10]

=

12

n(n+1)

[3n(n+2)+5(n+2)]

=

12

n(n+1)(n+2)(3n+5)

...(2)

Also,

k−1

n

(k

3

+k

2

)=

4

n

2

(n+1)

2

+

6

n(n+1)(2n+1)

=

2

n(n+1)

[

2

n(n+1)

+

3

2n+1

]

=

2

n(n+1)

[

6

3n

2

+3n+4n+2

]

=

12

n(n+1)

[3n

2

+7n+2]

=

12

n(n+1)

[3n

2

+6n+n+2]

=

12

n(n+1)

[3n(n+2)+1(n+2)]

=

12

n(n+1)(n+2)(3n+1)

...(3)

From (1), (2) and (3) we obtain

1

2

×2+2

2

×3+...+n

2

×(n+1)

1×2

2

+2×3

2

+...+n×(n+1)

2

=

12

n(n+1)(n+2)(3n+1)

12

n(n+1)(n+2)(3n+5)

=

n(n+1)(n+2)(3n+1)

n(n+1)(n+2)(3n+5)

=

3n+1

3n+5

Thus, the given result is proved.

Similar questions