Math, asked by dmshankar503, 10 months ago

Find sum of zeros x^2-3x-1​

Answers

Answered by Carapace
5

Answer:

Given polynomial : p(x) = x² - 3x - 1

On comparing this with ax² + bx + c, we get

  • a = 1, b = - 3, c = - 1

Now,

Sum of zeroes = - b/a

→- (- 3)/1

→ 3/1

3

Hence, the sum of zeroes is 3.

Answered by chaitragouda8296
4

Given :

 {x}^{2}  - 3x - 1

To find :

The sum of zeroes of the given polynomial .

Solution :

Compare the given polynomial with the general form of quadratic polynomial ....

on \:  \: comparing \:  \:  \:  \:  {x}^{2}  - 3x - 1  \:  \:  \: with \\ a {x}^{2} +  bx + c \:  \:  \:  \:  \: we \:  \: get \:  \:  \:  \\  \\ a = 1  \\ b =  - 3 \\ c =  - 1 \\  \\ we \:  \: know \:  \: that \:  \:  \\  \\ the \: sum \: of \: zeroes \: of \: the \: quadratic \:  \\ polynomial \: ( \alpha  +  \beta ) =  \frac{ - b}{a} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ - 3}{ - 1} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 3 \\  \\

Therefore ,,, the sum of zeroes of x^2 - 3x - 1 is 3 .....

Please mark it as Brainliest .....

Similar questions