Math, asked by shtttyy3feg, 8 months ago

Find sum to infinity of the series
1/8 - 1/9 +1/16 + 1/27 + 1/32 - 1/81 + .....................

Answers

Answered by pulakmath007
74

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

For a Geometric Progression with

First term = a

Common Ratio = r ( < 1 )

Sum of the series upto infinite number of terms

  \displaystyle \:  \sf{=  \frac{a}{1 - r} }

TO DETERMINE

The sum of series with infinite number of terms

  \displaystyle \:  \sf{ \frac{1}{8}  -  \frac{1}{9}  +  \frac{1}{16}  -  \frac{1}{27}   +  \frac{1}{32}   -  \frac{1}{81} + ......... }

CALCULATION

  \displaystyle \:  \sf{ \frac{1}{8}  -  \frac{1}{9}  +  \frac{1}{16}  -  \frac{1}{27}   +  \frac{1}{32}   -  \frac{1}{81} + ......... }

  \displaystyle \:  \sf{ \bigg( \frac{1}{8}   +  \frac{1}{16}     +  \frac{1}{32}    + ......... \bigg) - \bigg( \frac{1}{9}   +  \frac{1}{27}     +  \frac{1}{81}    + ......... \bigg) \:  }

 =   \sf{A  -  B \:  \:  \: (Say) }

Where

  \displaystyle \:  \sf{A =  \bigg( \frac{1}{8}   +  \frac{1}{16}     +  \frac{1}{32}    + ......... \bigg) }

  \displaystyle \:  \sf{ B = \bigg( \frac{1}{9}   +  \frac{1}{27}     +  \frac{1}{81}    + ......... \bigg) \:  }

Now

  \displaystyle \:  \sf{ \bigg( \frac{1}{8}   +  \frac{1}{16}     +  \frac{1}{32}    + ......... \bigg) } \: is \: a \: geometric \: series \:

 \displaystyle \:  \sf{First \:  term = \frac{1}{8}   \: and \:  common \:  ratio  =  \frac{1}{2} }

So

  \displaystyle \:  \sf{A=  \frac{ \frac{1}{8} }{1 -  \frac{1}{2} } =  \frac{1}{8}  \times 2 =  \frac{1}{4}  }

Again

  \displaystyle \:  \sf{ \bigg( \frac{1}{9}   +  \frac{1}{27}     +  \frac{1}{81}    + ......... \bigg) \:  }is \: a \: geometric \: series \:

 \displaystyle \:  \sf{First \:  term = \frac{1}{9}   \: and \:  common \:  ratio  =  \frac{1}{3} }

  \displaystyle \:  \sf{B=  \frac{ \frac{1}{9} }{1 -  \frac{1}{3} }  =  \frac{1}{9} \times  \frac{3}{2}  =  \frac{1}{6}  }

So the required answer is

 \displaystyle \sf{ A - B =  \frac{1}{4}  -  \frac{1}{6} =  \frac{3 - 2}{12} =  \frac{1}{12}   \: }

Similar questions