Math, asked by agaur9013, 5 months ago

Find T.S.A and Volume of cone with radius 15 cm and height 20 cm ​

Answers

Answered by Anonymous
4

Answer:

Analysis

Here we're given a cone whose radius is 15cm and height is 20cm. And we've to find the Total Surface Area(TSA) and Volume of the given.

And we know the volume of cone = \rm{\dfrac{1}{3}πr^2h} and TSA of cone = \rm{πr(r+l)}.So let's divide the question into two parts. In the first part we've to find the tsa, and in the second part we've to find its volume. And taking \rm{π=3.14}

Given

  • Radius of cone = 15cm.
  • Height of cone = 20cm.
  • Assuming π = 3.14

To Find

TSA and volume of the cone.

Answer

\Large{\underline{\underline{\mapsto{\rm{Total\:Surface\:Area}}}}}

\large{\underline{\boxed{\leadsto{\rm{TSA\:of\:Cone=πr(r+l)}}}}}

\rm\rightarrow{TSA=πr(r+l)}

\rm\rightarrow{TSA=3.14\times15cm(15cm+25)}

\rm\rightarrow{TSA=47.1cm(40cm)}

\rm\rightarrow{TSA=1884cm^2}

{\boxed{\boxed{\rm{\rightarrow{TSA=1884cm^2✔}}}}}

\Large{\underline{\underline{\mapsto{\rm{Volume}}}}}

\large{\underline{\boxed{\leadsto{\rm{Volume\:of\:Cone=\dfrac{1}{3}πr^2h}}}}}

\rm\rightarrow{V=\dfrac{1}{3}πr^2h}

\rm\rightarrow{V=\dfrac{1}{3}\times3.14\times(15cm)^2(20cm)}

\rm\rightarrow{V=\dfrac{1}{\cancel{3}}\times3.14\times{\cancel{15cm}}\times15cm(20cm)}

\rm\rightarrow{V=3.14\times5cm\times15cm\times20cm}

\rm\rightarrow{V=15.7cm\times300cm^2}

\rm\rightarrow{V=4710cm^3}

{\boxed{\boxed{\rightarrow{\rm{V=4710cm^3✔}}}}}

Hence the TSA of the cone is 1884cm² and the volume of the cone is 4710cm³ which is the required answer.

\large{\underline{\boxed{\bigstar{NOTE\rightarrow}}}}

Here we're not given the value of slant height(l), so we've to find its value. And we can find it by applying Pythagoras Theorem.

As l²=r²+h²

\rm\rightarrow{l^2=r^2+h^2}

\rm\rightarrow{l^2=(15cm)^2+(20cm)^2}

\rm\rightarrow{l^2=225cm^2+400cm^2}

\rm\rightarrow{l^2=625cm^2}

\rm\rightarrow{l=\sqrt{625cm^2}}

\rm\rightarrow{l=25cm✔}

HOPE IT HELPS.

\Large\bf\color{steelblue}{@MissTranquillity}

Similar questions