Math, asked by desilvarasangi5, 12 hours ago

Find ( Take Pi = 3 )
(i) Area of A ?
(ii) Area of B ?
(iii) Total Area of the shape ?

show the workings

Attachments:

Answers

Answered by ankitpradhan665
1

Answer:

(1) Area of A = 78.54 m square

(2) Area of B = 60 m square

(3) total area = 108.4 m square

Step-by-step explanation:

( 1 ) radius = diameter /2

= 10/2

= 5 m square

Area of A =

 = \pi {r}^{2}

 =  \frac{22}{7}  \times  {5}^{2}

 =  \frac{22}{7}  \times 25

 =  \frac{550}{7}

 = 78.54 {m}^{2}

( 2 ) Area of rectangle

= length × breadth

= 10 × 6

= 60 m square

( 3 ) total area

= 60 + 78.54

= 108.54 metre square

please mark it as brainliest

Answered by ItzBrainlyLords
1

Solution :

i) Area of A :

  • We see the fig. is semi circle

here,

➪ ST = UV = 10m

 \\  \large \sf \leadsto \:  radius =  \frac{diameter}{2}  \\  \\  \large \sf \: r =  \frac{10}{2}  \\  \\  \large  \sf\therefore \: radius = 5m \\

Formula :

 \\  \large \sf  \mapsto \:  \underline{\boxed{ \sf area = \pi {r}^{2} \: }} \\

  • For semi circle

( half of circle = semi circle)

 \\  \large \rm \implies \: area =  \frac{\pi {r}^{2} }{2}  \\

Given value of pie = 3

Solving :

 \\  \large \sf \implies \:area =   \frac{3 \times  {5}^{2} }{2}  \\  \\ \large \sf \implies \:  area = \frac{3 \times  {5}^{}  \times 5}{2}  \\  \\ \large \sf \implies  \: area = \:  \frac{75 }{2}  \\  \\

 \large \tt \underline{ \underline{ \star \:  \: area = 37.5 {m}^{2} }} \\

_____________________________________

ii) Area of B :

  • Fig. = rectangle

  \\  \large \sf \leadsto \underline{ \boxed{ \sf \: area = length  \times breadth}} \\

  • Length = 10m

  • Breadth = 6m

 \\  \large \rm \implies \: area = 6m \times 10m \\

 \large \tt \underline{ \underline{ \star \:  \: area = 60{m}^{2} }} \\

___________________________________

iii) area of whole fig.

  • Area of whole figure =

 \\ \large \rightarrow  \tt \: area \:  \: of \:  \: (a )+  area \:  \: of \:  \: (b) \\

 \large \implies \sf \: 37.5 {m}^{2}  + 60 {m }^{2}  \\

 \large \tt \underline{ \underline{ \star \:  \: area = 97.5{m}^{2} }} \\

Attachments:
Similar questions