Math, asked by meena3868, 11 months ago

find tan 3A, if sin 3A=cos45°​

Answers

Answered by Equestriadash
23

Given: sin 3A = cos 45°.

To find: The value of tan 3A.

Answer:

It's given that sin 3A = cos 45°.

Sine and cosine are equal at an angle of 45°.

[sin 45° = cos 45° = 1/√2]

⇒ 3A = 45

A = 45/3

A = 15°

We now have the value of A. Using it to find tan 3A,

⇒ tan 3*15°

= tan 45°

= 1


Equestriadash: Thanks for the Brainliest! ♥
Answered by Anonymous
29

SOLUTION

  • The value of tan3A for A = 45° is - 1

Given

 \sf \:  \sin3A =  \cos(45)

To finD

Value of tan3A

We know that,

  • sin∅ = cos(90 - ∅)

Implies,

 \longrightarrow \:  \sf \: cos(90 - 3A) = cos45 \\  \\  \longrightarrow \:  \sf \: 90 - 3A = 45 \\  \\  \longrightarrow \:  \sf \: 3A = 135 \\  \\  \longrightarrow \  \boxed { \boxed{\sf \: A = 45}}

Now,

 \sf \: tan3x \\  \\  \dashrightarrow \:  \sf \: tan3(45) \\  \\  \dashrightarrow \:  \sf \: tan135 \\  \\   \dashrightarrow \sf tan(90  +  45)

NoTE

  • (90 + ∅) lies in second quadrant and only sine and cosecant functions are positive

  • tan(90 + ∅) = cot∅

Thus,

 \dashrightarrow \:  \sf \:  -  \: cot45 \\  \\  \dashrightarrow \:  - 1

Similar questions