Math, asked by rinamohite0505, 7 months ago

Find
finde \:  \frac{dy}{dx \: }  \: if \: y =  log( logx)

Answers

Answered by Asterinn
5

Given :

y = log( logx)

To find :

\dfrac{dy}{dx}

Solution :

y = log( logx)

Now differentiating both sides :-

 \implies\dfrac{dy}{dx}=  \dfrac{d(log( logx))}{dx}

We know that :-

  • d(log t)/dt = 1/t

Now using Chain rule :-

 \implies\dfrac{dy}{dx}=   \dfrac{1}{ log(x) }  \times \dfrac{d( log(x) )}{dx} \times \dfrac{dx}{dx}

\implies\dfrac{dy}{dx}=   \dfrac{1}{ log(x) }  \times \dfrac{1}{x} \times 1

\implies\dfrac{dy}{dx}=  \dfrac{1}{x}  \dfrac{1}{ log(x) }

Answer :

\dfrac{dy}{dx}=  \dfrac{1}{x}  \dfrac{1}{ log(x) }

______________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

___________________

Answered by Anonymous
12

Given ,

The function is  \tt y = log \{log(x)  \}

Differentiaing y wrt x by using chain rule , we get

 \tt \frac{dy}{dx}  =   \frac{d}{dx}  log \{ log(x)  \}

 \tt \frac{dy}{dx}  =    \frac{1}{ log(x) }  \frac{d}{dx}  log(x)

\tt \frac{dy}{dx}  =    \frac{1}{ log(x) }  \times  \frac{1}{x}

\tt \frac{dy}{dx}  =    \frac{1}{x log(x) }

Remmember :

 \star \:  \:  \tt \frac{d}{dx}  log(x)  =  \frac{1}{x}

_______________ Keep Smiling

Similar questions