Math, asked by rahenaanzar, 2 months ago

Find
( { \frac{81}{16} })^{ \frac{ - 3}{4} } \times ( { \frac{25}{9} })^{ \frac{ - 3}{2} } \div ({ \frac{5}{2} })^{ - 3}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \bigg( { \dfrac{81}{16} } \bigg)^{ \dfrac{ - 3}{4} } \times  \bigg( { \dfrac{25}{9} } \bigg)^{ \dfrac{ - 3}{2} } \div  \bigg({ \dfrac{5}{2} } \bigg)^{ - 3}

\rm \:  \:  =  \: \: \bigg( { \dfrac{16}{81} } \bigg)^{ \dfrac{3}{4} } \times  \bigg( { \dfrac{9}{25} } \bigg)^{ \dfrac{3}{2} } \div  \bigg({ \dfrac{2}{5} } \bigg)^{3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {\bigg(\dfrac{a}{b} \bigg) }^{ - m}  = {\bigg(\dfrac{b}{a} \bigg) }^{m}\bigg  \}}

\rm \:  \:  =  \: \: \bigg( { \dfrac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3} } \bigg)^{ \dfrac{3}{4} } \times  \bigg( { \dfrac{3 \times 3}{5 \times 5} } \bigg)^{ \dfrac{3}{2} }  \times   \bigg({ \dfrac{5}{2} } \bigg)^{3}

\rm \:  \:  =  \: \: \bigg( { \dfrac{2}{3} } \bigg)^{4 \times  \dfrac{3}{4} } \times  \bigg( { \dfrac{3}{5} } \bigg)^{2 \times  \dfrac{3}{2} }  \times   \bigg({ \dfrac{5}{2} } \bigg)^{3}

\rm \:  \:  =  \: \: \bigg( { \dfrac{2}{3} } \bigg)^{3} \times  \bigg( { \dfrac{3}{5} } \bigg)^{3}  \times   \bigg({ \dfrac{5}{2} } \bigg)^{3}

\rm \:  \:  =  \: {\bigg(\dfrac{2}{3} \times \dfrac{3}{5}  \times \dfrac{5}{2}  \bigg) }^{3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {x}^{m}  \times  {y}^{m}  =  {(xy)}^{m} \bigg \}}

\rm \:  \:  =  \:  {(1)}^{3}

\rm \:  \:  =  \: 1

Hence,

\bf :\longmapsto\:\: \bigg( { \dfrac{81}{16} } \bigg)^{ \dfrac{ - 3}{4} } \times  \bigg( { \dfrac{25}{9} } \bigg)^{ \dfrac{ - 3}{2} } \div  \bigg({ \dfrac{5}{2} } \bigg)^{ - 3} = 1

Additional Information :-

\green{\boxed{ \tt \:  {x}^{m} \times  {x}^{n}  =  {x}^{m + n}}}

\green{\boxed{ \tt \:  {x}^{m} \div  {x}^{n}  =  {x}^{m  -  n}}}

\green{\boxed{ \tt \:  {( {x}^{m}) }^{n}  =  {x}^{mn} }}

\green{\boxed{ \tt \:  {x}^{0} = 1 }}

\green{\boxed{ \tt \:  {x}^{ - y} =  \dfrac{1}{ {x}^{y} } }}

\green{\boxed{ \tt \:  {x}^{m} \times  {y}^{m} =  {(xy)}^{m} }}

Answered by Salmonpanna2022
8

Correct Question:-

</u><u> \bigg( \frac{81}{16}  \bigg)^{ \frac{ - 3}{4} }  \times \left\{{  \bigg( \frac{25}{9}  \bigg) ^{  \frac{ - 3}{2} } \div  \bigg( \frac{5}{2} \bigg)^{ - 3}   }\right\}  \\  \\

⟹ </u><u> \bigg( \frac{16}{81}  \bigg)^{ \frac{ 3}{4} }  \times \left\{{  \bigg( \frac{9}{25}  \bigg) ^{  \frac{3}{2} } \div  \bigg( \frac{2}{5} \bigg)^{ 3}   }\right\}  \\  \\

⟹  \bigg( \frac{2}{3}  \bigg) ^{4 \times  \frac{3}{4} }  \times  \left \{ \bigg( \frac{3}{5}  \bigg)^{3}   \times  \bigg( \frac{5}{2}   \bigg)^{3} \right \} \\  \\

⟹  \bigg( \frac{2}{3}  \bigg) ^{ \cancel{4 }\times  \frac{3}{ \cancel{4}} }  \times  \left \{ \bigg( \frac{3}{5}  \bigg)^{3}   \times  \bigg( \frac{5}{2}   \bigg)^{3} \right \} \\  \\

⟹  \bigg( \frac{2}{3}  \bigg) ^{3 }  \times  \left \{ \bigg( \frac{3}{5}  \bigg)^{3}   \times  \bigg( \frac{5}{2}   \bigg)^{3} \right \} \\  \\

⟹  \bigg( \frac{2}{3}  \bigg) ^{3}   \times \bigg( \frac{ {3}^{3} }{ {5}^{3} }   \times \frac{ {5}^{3} }{ {2}^{3} }   \bigg)\\  \\

⟹  \bigg( \frac{2}{3}  \bigg) ^{3}   \times \bigg( \frac{ {3}^{3} }{  \cancel{{5}^{3}} }   \times \frac{  \cancel{{5}^{3}} }{ {2}^{3} }   \bigg)\\  \\

⟹  \bigg( \frac{ {2}^{3} }{ {3}^{3} }  \bigg)    \times \bigg( \frac{ {3}^{3} }{ {2}^{3} } \bigg)\\  \\

⟹ \frac{ {2}^{3} }{ {3}^{ {3} } }   \times  \frac{ {3}^{3} }{ {2}^{3} }  \\  \\

⟹ \frac{\cancel{ {2}^{3} }}{ \cancel{{3}^{ {3} }} }   \times  \frac{ \cancel{{3}^{3}} }{ \cancel{{2}^{3}} }  \\  \\

⟹ \: 1 \:  \: Ans. \\  \\

Know more laws of Integral Exponents

For any two real numbers a and b, a, b ≠ 0, and for any two positive integers, m and n

➲ If a be any non - zero rational number, then

a^0 = 1

➲ If a be any non - zero rational number and m,n be integer, then

(a^m)^n = a^mn

➲ If a be any non - zero rational number and m be any positive integer, then

a^-m = 1/a^m

➲ If a/b is a rational number and m is a positive integer, then

(a/b)^m = a^m/b^m

➲ For any Integers m and n and any rational number a, a ≠ 0

a^m × a^n = a^m+n

➲ For any Integers m and n for non - zero rational number a,

a^m ÷ a^n = a^m-n

➲ If a and b are non - zero rational numbers and m is any integer, then

(a+b)^m = a^m × b^m

  • I hope it's help you...☺
Similar questions