Find if .
Show step-by-step
Answers
Required Answer:-
Given Information:
- x² - yz = y² - xz = z² - xy = i
To find:
- The value of x² + y² + z²
Answer:
- The value of x² + y² + z² is 2i
Solution:
Given,
➡ x² - yz = y² - xz
➡ x² - y² = yz - xz
➡ x² - y² = -xz + yz
➡ (x + y)(x - y) = -z(x - y)
Now, cancelling out (x - y) from both sides, we get,
➡ x + y = -z
➡ x + y + z = 0 .....(i)
Now, note this,
- x² - yz = i or yz = x² - i
- y² - xz = i or xz = y² - i
- z² - xy = i or xy = z² - i
Now, squaring both sides of equation (i), we get,
➡ x² + y² + z² + 2(xy + yz + xz) = 0
Substituting the values of xy, yz and xz, we get,
➡ x² + y² + z² + 2(z² - i + x² - i + y² - i) = 0
➡ x² + y² + z² + 2z² + 2x² + 2y² - 2i - 2i - 2i = 0
➡ 3(x² + y² + z²) = 6i
Dividing both sides by 3, we get,
➡ x² + y² + z² = 2i
Hence, the value of x² + y² + z² is 2i
Note: i = √-1 (imaginary number)
Given:
x² - yz = y? - xz = z² - xy = i
To find:
- The value of x? + y² + z?
Answer:
The value of x² + y? + z? is 2i
Solution:
Given,
➦x - yz = y? - xz
➦ x² - y? = yz - XZ
➦x² - y? = -xz + yz
➦(x + y)(x - y) = -z(x - y)
Now, cancelling out (x - y) from both sides, we get
x + y = -z
X+ y + z = 0
Now, note this,
1) x² - yz = i or yz = x² - i
2) y - xz = i or xz = y2 - i
3) z? - xy = i or xy = z? i
Now, squaring both sides of equation (i), we get,
x2 + y2 + z2 + 2xy + yz + xz) = 0
Substituting the values of xy, yz and xz, we get,
➦ x² + y? + z? + 2(z² - i + x² - i + y² - i) = 0
➦x² + y2 + z2 + 2z? + 2x? + 2y? - 2i - 2i - 2i
= 0
➦ 3(x? + y? + z?) = 6i
Dividing both sides by 3, we get,
x² + y² + z = 2i
Hence, the value of x? + y? + z? is 2i