Math, asked by kalaivani27, 1 year ago

find
tan(  \frac{\pi}{4}  -  \tan (inverse )( \frac{1}{8} )

Answers

Answered by rakeshmohata
1
Hope u like my process
======================

Formula to be used
=================
 =  >  \bf \:  \tan(a  -  b)  =  \frac{ \tan(a) -  \tan(b)  }{1 +  \tan( a ) \tan(b)  }
_________________________

 =  >  \tan( \frac{\pi}{4}  -  \tan ^{ - 1} ( \frac{1}{8} ) )  \\  \\  =  \frac{ \tan( \frac{\pi}{4} ) -  \tan( \tan ^{ - 1} ( \frac{1}{8} ) )  }{1 +  \tan( \frac{\pi}{4} )  \tan {}^{ - 1} ( \tan( \frac{1}{8} ) ) }  \\  \\  =   \frac{1 -  \frac{1}{8} }{1 + (1)( \frac{1}{8}) }  =  \frac{ \frac{7}{8} }{1 +  \frac{1}{8} }  \\  \\  =   \frac{ \frac{7}{8} }{ \frac{9}{8} }  =  \frac{7}{8}  \times  \frac{8}{9}  \\  \\  =   \bf \underline{ \frac{7}{9} }
________________________
Hope this is ur required answer

Proud to help you
Similar questions