find the 10th term of AP:-x,,4x/3,,5x/3,,,2x........
Answers
Step-by-step explanation:
\underline{\textbf{Given:}}
Given:
\mathsf{A.P\;is\;x,\dfrac{4x}{3},\dfrac{5x}{3},2x\;.\;.\;.\;.\;.\;.}A.Pisx,
3
4x
,
3
5x
,2x......
\underline{\textbf{To find:}}
To find:
\mathsf{10\,th\;term\;of\;the\;x,\dfrac{4x}{3},\dfrac{5x}{3},2x\;.\;.\;.\;.\;.\;.}10thtermofthex,
3
4x
,
3
5x
,2x......
\underline{\textbf{Solution:}}
Solution:
\mathsf{Consider,}Consider,
\mathsf{x,\dfrac{4x}{3},\dfrac{5x}{3},2x\;.\;.\;.\;.\;.\;.}x,
3
4x
,
3
5x
,2x......
\mathsf{Here,\;first\;term,a=x}Here,firstterm,a=x
\mathsf{Here,\;common\;difference,\;d=t_2-t_1=\dfrac{4x}{3}-x=\dfrac{x}{3}}Here,commondifference,d=t
2
−t
1
=
3
4x
−x=
3
x
\textbf{10 th term of the A.P}10 th term of the A.P
\mathsf{=t_{10}}=t
10
\mathsf{=a+9d}=a+9d
\mathsf{=x+9\left(\dfrac{x}{3}\right)}=x+9(
3
x
)
\mathsf{=x+3x}=x+3x
\mathsf{=4\,x}=4x
\implies\boxed{\bf\,t_{10}=4\,x}⟹
t
10
=4x
\underline{\textbf{Answer:}}
Answer:
\textbf{10 th term of the A.P is 4x}10 th term of the A.P is 4x
\underline{\textbf{Formula used:}}
Formula used:
\begin{gathered}\boxed{\begin{minipage}{8cm}$\\\textsf{The n th term of the A.P, a, a+d, a+2d, . . . . .is}\\\\\mathsf{t_n=a+(n-1)d}\\$\end{minipage}}\end{gathered}