Math, asked by sreeparvathy06, 3 months ago

Find the 10th term of the AP where sum of the first n terms is given by 2n² + 3n.​

Answers

Answered by ABHINAV012
4

Answer:

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

Step-by-step explanation:

Given  \: , Sn = 2n²+3n

now  \: we  \: know \:  that,

S1 = a1  \\

[ By  \: definition \:  that \:  sum \\  \:  of  \:  first \:  term \:  is \:  a1 \:  only]

S1 = 2(1)² + 3(1)

= 2+3

= 5 = a1

now \: S2 = 2(2)²+3(2)

= 8+6

= 14

a2 = S2-S1

= 14-5

= 9  = a2

d = a2 - a1

= 9-5

= 4

now \:  we \:  know \:  that ,

a10 = a1+ (n-1)d

= 5 + (10-1)4

= 5+36

= 41

therefore ,  \: the  \: 10th  \\ \:  term \:  of  \: the  \: AP  \: is \:  41.

please  \: like \:  my \:  answer \\     \&\\ mark  \: me  \: brainliest \:  please \: :)))

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

\star \: i \: hope \: you \: will \: understand \: me\star

Similar questions