Math, asked by akashsingh7323881818, 9 months ago

Find the 20th term from the last term of the A.P. 3, 8, 13, …, 253.​

Answers

Answered by ShírIey
100

AnswEr:

Given

AP is 3,8,13.... 253

To Find :-

20th Term from the last Term of AP

Explanation:-

We can Write the Given AP in reverse Order

253,248,243......... 13,8,3

First Term (a) = 253

Common Difference = \sf\: a_2 \:-\:a_1

:\implies\sf\: 248 \:-\: 253

:\implies\large\boxed{\sf{\red{d\:=\:-5}}}

\bold{\underline{\sf{By \: Using\; Formula}}}

\bigstar\large{\underline{\boxed{\sf{\pink{an \:=\; a\;+\;(n\:-\;1)d}}}}}

Putting Values

:\implies\sf\:  253 + 19 (-5)

:\implies\sf\:  253 - 95

:\implies\large\boxed{\sf{\red{158}}}

\small\bold{\underline{\sf{Hence,\;20th\:term\;from\;the\;last\;of\;AP\;is\:158.}}}

Answered by Anonymous
16

 \mathtt{ \huge{ \fbox{Solution :)}}}

Given ,

The AP is 3 , 8 , 13 , … , 253

Let us assume that , the sequence is 253 , 248 , 243 , ... , 3

Here ,

  • First term (a) = 253
  • Common difference (d) = -5

We know that , the general formula of an AP is given by

 \large  \mathtt{\fbox{  a_{n} = a + (n - 1)d }}

Substitute the known values , we get

 \sf \mapsto a_{20} = 253 + (20 - 1)( - 5) \\  \\\sf \mapsto  a_{20} = 253 + (19)( - 5)\\  \\ \sf \mapsto a_{20} =253  -  95 \\  \\\sf \mapsto a_{20} = 158

Hence , the 20th term of an AP from the last term is 158

______________ Keep Smiling ☺

Similar questions