Math, asked by revathiselva451, 6 months ago

find the 20th term of the A.P 15,12,9,6.....​

Answers

Answered by Anonymous
41

\huge\sf\green{\underline{\underline{Given\: :-}}}

\sf{}

 \sf \large{ t_{1} = a = 15 \: } \\ \sf \large{ t_{2}\: = 12 \:}  \:  \:  \:  \:  \:  \: \\ \sf \large{ t_{3}  \:=  \: 9 \: } \:  \:  \:  \:  \:  \:  \:  \\ \sf \large{ t_{4} = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf{}

\huge\sf\green{\underline{\underline{To \: find \: :-}}}

\sf{}

 \sf \large \: { t_{20 \:} =  \:  \: ?}

\sf{}

\huge\sf\green{\underline{\underline{Formula\: used \: :-}}}

\sf{}

 \sf \large{ t_{n}} = a + (n - 1) \: d

\sf{}

\huge\sf\green{\underline{\underline{Solution \: :-}}}

\sf{}

According to the question,

To find the 20th term of the A.P. ,

The value of d must be known

So, d = ?

\sf{}

 \sf \large{d =  t_{2}  \:  - \:   t_{1}= 12 \:  -  15  = \red{ -  \: 3}} \\  \sf \large{d =  \:  t_{3}  \:  - \:   t_{2}= 9 \:  -  12 \:  = \red{ -  \: 3}}  \\   \sf \large{d = \:   t_{4}   \:  - \:   t_{3} \:  =  \: 6 \:  -  9  \: = \red{ -  \: 3}} \\  \\  \sf \large \purple{ \therefore \: d \:  =  \:  - \:  3 \: \: \: \; \: \; \; \: \: \: \: \: \; \: \; \; \: \: \: \: \; \: \; \; \:\: \; \: \; \;  \:\:}

\sf{}

We got all the required values ,

So now we will substitute them.

\sf{}

 \sf \large \red{{ t_{n}} = a + (n - 1) \: d} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \large{{ t_{20}} = 15 + (20- 1) \:  - 3} \\ \sf \large{{ t_{20}} = 15 + 19  \times \:  - 3}  \:  \:  \:  \:  \:  \:  \:  \\ \sf \large{{ t_{20}} = 15  \:  - 57} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: \\   \sf \large {{ t_{20}} = -  \: 42}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf{}

Thus the 20th term of the A.P. is -42

Answered by MrHyper
22

\huge\blue{\textbf{\textsf{question:}}}

 \bf find \: the \:  {20}^{th} \: term \: of \: the \: ap :  \\  \bf 15 \:  \: 12 \:  \: 9 \:  \: and \:  \: 6

\huge\blue{\textbf{\textsf{answer:}}}

\bf{Given:}

\sf{~~~~~~~~a=15}

\sf{~~~~~~~~d=a_{2}-a_{1}}

\sf{~~~~~~~~~~~=12-15}

\sf{~~~~~~~~d={\underline{\boxed{-3}}}}

\sf{~~~~~~~~n=20}

\sf{ }

\sf{~~ \therefore a_{n}=a+(n-1)d}

\sf{~~~~a_{20}=15+(20-1)-3}

\sf{~~~~~~~~~~=15+(19)-3}

\sf{~~~~~~~~~~=15-57}

\sf{\therefore a_{20}={\underline{\boxed{\bf -42}}}}

\bf{Hence,~20^{th}~term~of~the~AP~is~~-42}

Similar questions