Math, asked by chethahappy, 1 year ago

find the 25th term from end of the AP 10,7,4.....-62​

Answers

Answered by hariom7205
4

Answer:

Step-by-step explanation:

Reversing the AP

-62......4,7,10

A= -62 , d=3 , An=10

An=a+(n-1)d

10= -62+(n-1)3

10+62=3(n-1)

72÷3=n-1

n-1=24

n=25

a25=a+24d

a25= -62+24(3)

a25= -62+72

a25=10

Answered by Anonymous
8

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

We have to reverse the A. P because we have to find the 25th term from the end

\tt given \begin{cases} \sf{A.P : -62.........4,7,10}  \\  \sf{First \: term \: (a)  = -62 } \\  \sf{Common \: Difference = 3}  \end{cases}

_______________________________

To Find :

We have to find 25th term of the A. P

_______________________________

Solution :-

As, we have to find the 25th term of the A. P

So, Number of terms (n) will be 25.

\Large{\star{\underline{\boxed{\sf{A_{n} = a + (n - 1)d}}}}}

(Putting Values)

\sf{A_{25} = -62 + (25 - 1)3} \\ \\ \sf{A_{25} = -62 + (24)3} \\ \\ \sf{A_{25} = -62 + 72} \\ \\ \sf{A_{25} = 72 - 62} \\ \\ \sf{A_{25} = 10}

∴ 25th term from the end is 10.

\large{\star{\underline{\boxed{\sf{A_{25} = 10}}}}}

\rule{200}{2}

#answerwithquality

#BAL

Similar questions