Math, asked by alisha78651, 1 year ago

Find the 30th term of the A.P. 7, 11, 15, 19,....

Answers

Answered by Shubhangi4
7
Heya!

HERE IS YOYR ANSWER:

a1= 7
a2= 11
d = a2-a1 = 11-7 = 4

We know that,

a30= a+29d

= 5+ 29(4)
= 5+116
=121

So, 30 term of AP= 121

:)
Answered by AnswerStation
7
\boxed{\boxed{\large\mathsf{123}}}
___________________________________

\underline{\Large\mathbf{ Given :}}

\mathsf{In \: the \: A.P \: 7, 11, 15, 19}

\mathsf{First \: term(a) =  7}

\mathsf{Common \: Difference (d)} \\\mathsf{ => a_2 - a_1 = 4 }

\underline{\Large\mathbf{To \: Find :}}

\mathsf{30^{th} term \: of \: a_{30}}

\underline{\underline{\huge\mathfrak{Solution :}}}

\underline{\textsf{Using the Formula,}}

\boxed{\Large\mathsf{a_n = a + (n-1)d}}

\mathsf{=> a_{30} = a + (n-1)d}

\underline\text{Putting the Values in the Formula, We get,}

\mathsf{=> a_{30} = 7+(30-1)4}

\mathsf{=> a_{30} = 7 + (29)4}

\mathsf{=> a_{30} = 7 + 116}

\boxed{\mathbf{=> a_{30} = 123}}

Hence, the \mathsf{30^{th}} term of A.P is \mathsf{123.}
____________________________________
Similar questions