find the 4 numbers in an AP whose Sum is 10 and the sum of whose square is 30
Answers
Answer:
Let the four numbers in A.P be a-3d, a-d,a+d,a+3d. ---- (1)
Given that Sum of the terms = 20.
= (a-3d) + (a-d) + (a+d) + (a+3d) = 20
4a = 20
a = 5. ---- (2)
Given that sum of squares of the term = 120.
= (a-3d)^2 + (a-d)^2 + (a+d)^2 + (a+3d)^2 = 120
= (a^2 + 9d^2 - 6ad) + (a^2+d^2-2ab) + (a^2+d^2+2ad) + (a^2+9d^2+6ad) = 120
= 4a^2 + 20d^2 = 120
Substitute a = 5 from (2) .
4(5)^2 + 20d^2 = 120
100 + 20d^2 = 120
20d^2 = 20
d = +1 (or) - 1.
Since AP cannot be negative.
Substitute a = 5 and d = 1 in (1), we get
a - 3d, a-d, a+d, a+3d = 2,4,6,8.
Hope this helps!
Answer:
YOUR ANSWER
Step-by-step explanation:
Let the numbers be: a−3d,a−d,a+d,a+3d
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=32
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d)
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d)
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d)
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d)
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =276
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =276
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d 2 =276−4(8)
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d 2 =276−4(8) 2
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d 2 =276−4(8) 2 =20
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d 2 =276−4(8) 2 =20∴d=1
Let the numbers be: a−3d,a−d,a+d,a+3da−3d+a−d+a+d+a+3d=324a=32∴a=8(a−3d) 2 +(a−d) 2 +(a+d) 2 +(a+3d) 2 =2764a 2 +20d 2 =27620d 2 =276−4(8) 2 =20∴d=1Therefore the 4 numbers are: a−3d,a−d,a+d,a+3d=8−3,8−1,8+1,8+3={5,7,9,11}
- GIVE ME MORE THANKS
- MARK AS BRAIN LIST