Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals: (iv)f(x)=(x−1)2+3,x∈[–3,1]
Answers
Answered by
2
Answer:
Step-by-step explanation:
f(x)=(x-1)2+3,x lies in [-3,1]
f(x)= x^2-2x+1+3
f(x) =x^2-2x+4
Now for min: value put x=1
f(1)=(1)^2-2(1)+4=1-2+4=3
and for max: value put x=-3
f(-3)= (-3)^2-2(-3)+4=9+6+4=19
Similar questions