Math, asked by VanshikaSandhu, 5 hours ago

Find the addictive inverse of (3-√-16)/(2-√-9).

This question is given in Elements of Mathematics Class 11 Exercise 5.2 Complex Numbers. Please solve it as soon as possible.
 \frac{3 -  \sqrt{ - 6} }{2 -  \sqrt{ - 9} }

Answers

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

The additive inverse of

 \displaystyle \sf{ \frac{3 -  \sqrt{ - 16} }{2 -  \sqrt{ - 9} } }

EVALUATION

We have to find the additive inverse of

 \displaystyle \sf{ \frac{3 -  \sqrt{ - 16} }{2 -  \sqrt{ - 9} } }

We first simplify the expression

 \displaystyle \sf{ \frac{3 -  \sqrt{ - 16} }{2 -  \sqrt{ - 9} } }

 \displaystyle \sf{  = \frac{3 -  4i }{2 -  3i } }

 \displaystyle \sf{  = \frac{(3 -  4i)(2 + 3i) }{(2  +  3i)(2 - 3i) } }

 \displaystyle \sf{  = \frac{6 + 9i - 8i - 12 {i}^{2} }{ {2}^{2} - 9 {i}^{2}  } }

 \displaystyle \sf{  = \frac{6 + 9i - 8i  +  12  }{4 + 9 } }

 \displaystyle \sf{  = \frac{18 + i}{13 } }

Hence the required additive inverse

 \displaystyle \sf{  =  -  \bigg(\frac{18 + i}{13 } \bigg) }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. show that sinix=isinhx

https://brainly.in/question/11810908

2. if a+ib/c+id is purely real complex number then prove that ad=bc

https://brainly.in/question/25744720

Similar questions