Math, asked by Tamanna981, 1 year ago

find the altitude of a parallelogram with area 15.68 cm^2 and base 5.6m.​


turturaii: sdsd
panditadityadubey: hii
Tamanna981: hii

Answers

Answered by HappiestWriter012
7
Answer : 2.8cm

Step by step explanation :

 \boxed{\boxed{ \bf{Area \: of \: parallelogram = \: Base \times Length \: of \: altitude}}}

Given,
Area (A) = 15.68 cm^2
Base (b) = 5.6cm.
 \boxed{\boxed{ \bf{A = \: b \times Length \: of \: altitude}}}

15.68 = 5.6 × Length of altitude

Length of altitude = 15.68/5.6 = 2.8cm.

Therefore, The Length of altitude is 2.8cm.

iotgjortjoij: jkjhkj
iotgjortjoij: rtb
iotgjortjoij: brtb
iotgjortjoij: rgnktnrj
iotgjortjoij: rtgrt
iotgjortjoij: dfsdf
iotgjortjoij: ergrge
iotgjortjoij: ergerge
iotgjortjoij: er
Answered by sagarmankoti
1
We \: know \: that \: area \: of \: a \: parallelogram = bh \\ <br /><br />We \: know \: that \: area = 15.8 \: {cm}^{2} \: and \: base \: = 5.6 \: m= 5600 \: cm \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: bh = area \\ = &gt; 5600 \times h = 15.68 \\ = &gt; \: \: \: \: \: \: \: \: \: \:  \: \: \: \: \: h = \frac{15.68}{5600 } \\ = &gt; \: \: \: \: \: \: \:  \: \: \: \: \: \: \: \: h = 0.0028 \: cm \\ \\ \mathsf{So, \: the \: altitude \: of \: the \: parallelogram \: is \:0.0028 \: cm. }
Similar questions