Math, asked by MANIVELLOGU2561, 3 months ago

Find the altitude of a triangle, whose area is 48 sq.cm and base is 3.6 cm.

Answers

Answered by EnchantedGirl
7

★Given:-

  • Area of triangle = 48sq.cm.
  • Base = 3.6cm

★To find:-

  • Altitude of triangle.

★Solution:-

We know,

Area of triangle = 1/2(Base×height)

Substituting values in the formula,

→Area = 1/2 ( 3.6 ×h)

→48 = 1/2 ( 3.6 ×h)

→96 = 3.6×h

→h = 96/3.6

h = 26.67cm.

Hence,the altitude of the triangle is 26.67cm.

_____________

Know more:-

Important area formula's:

  • Area of square = (side)²
  • Area of rectangle = length×breadth.
  • Ar.Triangle  A=√s(s−a)(s−b)(s−c),where  s=(a + b + c)/2
  • Parallelogram  A = bh
  • Circle  A=πr²

______________

Answered by Anonymous
157

Given :-

  • Area of traingle = 48sq.cm.
  • Base = 3.6cm

To find :-

  • Altitude of triangle.

Solution :-

★ We know that ★

 \boxed{\rm{Area \: of \: triangle =  \frac{1}{2} (Base \:  \times  \: Height)}}

Substituting values of the formula,

● Area =  {\bf{\frac{1}{2} (3.6  \:  \times  \: h)}}

● 48 =  {\bf{\frac{1}{2} (3.6  \:  \times  \: h)}}

● 96 =  {\bf{3.6 × h }}

● h =  {\bf{\frac{96}{3.6}}}

h = 26.67 cm.

Hence,

  • The altitude of the triangle is  \boxed{\sf{26.67 cm}}

_______________________

Know More :

Important area formula's :

  • Area of square = (side)²

  • Area of reactangle = length × breath

  • Ar.Triangle A = s(s-a)(s-b)(s-c), where s =  {\bf{\frac{a  \: +  \: b  \: +  \: c}{2} }}

  • Parellogram A = bh

  • Circle A = 2πr²

_______________________

Similar questions