Math, asked by doradhanam09, 1 month ago

FIND THE AMOUNT IN COMPOUND INTEREST FORMULA : P = 15000, R = 9 percent, T = 3 years​

Attachments:

Answers

Answered by Anonymous
58

\large\underline{\underline{\maltese{\pmb{\sf{\red{ \: Given :-}}}}}}

  • ➬ P = 15000
  • ➬ R = 9 %
  • ➬ T = 3 years

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\maltese{\pmb{\sf{\red{ \: To  \: Find :-}}}}}}

  • ➬ Compound Interest = ?

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\maltese{\pmb{\sf{\red{ \: Solution :-}}}}}}

We know that :

\blue \bigstar \: \underline{ \boxed{\orange{\sf{C.I = P \bigg(1 + \dfrac{R}{100}\bigg )^T -P}}}}

Here :

  • ➳ C.I = Compound interest = ?
  • ➳ P = Principle = 15,000
  • ➳ R =Rate = 9%
  • ➳ T = Time = 3 years

Now Compound Interest :

\large{:\longmapsto\sf C.I = P \bigg(1 + \dfrac{R}{100} \bigg)^T - P }

\large{:\longmapsto\sf  \:  \:  \:  \:  \:    \:  \:  \:  \:  \: 15000\bigg(1 + \dfrac{9}{100} \bigg)^3 - 15000 }

\large{:\longmapsto\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  15000\bigg(1 + \cancel\dfrac{9}{100} \bigg)^3 - 15000 }

\large{:\longmapsto\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  15000\bigg(1 + 0.09 \bigg)^3 - 15000 }

\large{:\longmapsto\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  15000 \times \bigg(1.09 \bigg)^3 - 15000 }

\large{:\longmapsto\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  15000 \times 1.09 \times 1.09 \times 1.09  - 15000 }

\large{:\longmapsto\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  15000 \times 1.295  - 15000 }

\large{:\longmapsto\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  19425  - 15000 }

\large{\red{:\longmapsto{\purple{\underline{\overline{\boxed{\bf{C.I = Rs.4425}}}}}}}}

Hence :

\large{\red {\underline{\pink {\underline {\orange {\bf{\pmb {Compound  \: interest \:  i s \:  Rs.4425}}}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions