Math, asked by paa411, 1 month ago

Find the amount of R 36,000 after 2 years, compounded annually, the rate of interest being 10% for the first year and 12% for the second year.​

Answers

Answered by 12thpáìn
6

Given

  • Principal(P)= Rs. 36,000
  • Time(T) = 2 Year's
  • Rate(R) = 10% for 1st and 12% For 2nd Year's

To Find

  • Amount(A)

Formula Used

 \boxed{ \bf{Amount = P\left( 1+\dfrac{R}{100}\right) ^{n} }}

Solution

___________________

\sf{Amount= 36000\left( 1+\dfrac{10}{100}\right)\left( 1+\dfrac{12}{100}\right)  }

\sf{Amount= 36000\left( \dfrac{100 + 10}{100}\right)\left( \dfrac{100 + 12}{100}\right)  }

\sf{Amount= 36000 \times  \dfrac{1 10}{100}  \times \dfrac{112}{100} }

\sf{Amount= 36 \cancel0 \cancel{00 }\times  \dfrac{1 1 \cancel0}{ \cancel{100}}  \times \dfrac{112}{ 1 \cancel0 \cancel0} }

\sf{Amount= 36 \times 11 \times 112 }

\sf{Amount= 44352 }

Hence the Amount is Rs.44352.

Answered by rosoni28
6

\huge \mathbb{ \red {★᭄ꦿ᭄S} \pink{ᴏ}\purple{ʟᴜ} \blue {ᴛ} \orange{ɪ} \green{ᴏɴ★᭄ꦿ᭄}}

GIVEN::-

  • Principal(P)= Rs. 36,000

  • Time(T) = 2 Year's

  • Rate(R) = 10% for 1st and 12% For 2nd Year's

To find::-

  • Amount(A)

Formula Used::-

\huge\boxed{ \bf{Amount = P\left( 1+\dfrac{R}{100}\right) ^{n} }}

Solution::-

\tiny \boxed{Amount= 36000\left( 1+\dfrac{10}{100}\right)\left( 1+\dfrac{12}{100}\right) }

\tiny\boxed{Amount= 36000\left( \dfrac{100 + 10}{100}\right)\left( \dfrac{100 + 12}{100}\right) }

\tiny\boxed{Amount= 36000 \times \dfrac{1 10}{100} \times \dfrac{112}{100} }

\boxed{Amount= 36 \cancel0 \cancel{00 }\times \dfrac{1 1 \cancel0}{ \cancel{100}} \times \dfrac{112}{ 1 \cancel0 \cancel0} }

\bold{Amount= 36 \times 11 \times 112 }

\bold{Amount= 44352 }

Hence the Amount is Rs.44352.

Similar questions