Physics, asked by naayra7725, 7 months ago

Find the angle between p=2i+j+3k AMD Q=3i-2j+k

Answers

Answered by Anonymous
2

Given:

 \rm \overrightarrow{P} = 2\hat{i} + \hat{j} +3 \hat{k} \\  \rm \overrightarrow{Q} = 3\hat{i} -2 \hat{j} + \hat{k}

To Find:

 \sf Angle \ between \ \overrightarrow{P} \ and \ \overrightarrow{Q} \ (\theta)

Answer:

\rm \overrightarrow{P}. \overrightarrow{Q} = (2\hat{i} +\hat{j}  + 3 \hat{k}). (3\hat{i}  - 2 \hat{j} +  \hat{k}) \\  \\ \rm \overrightarrow{P}. \overrightarrow{Q} = (2 \times 3) + (1 \times ( - 2) + (3 \times 1) \\  \\  \rm \overrightarrow{P}. \overrightarrow{Q} =  6  -  2  + 3 \\  \\  \rm \overrightarrow{P}. \overrightarrow{Q} =  7

\rm  | \overrightarrow{P} |  =  \sqrt{ {2}^{2}  +  {1}^{2} +  {3}^{2}  } \\  \\   \rm  | \overrightarrow{P} |  =  \sqrt{4 + 1 + 9}  \\  \\  \rm  | \overrightarrow{P} |  =  \sqrt{14}  \\  \\  \\  \rm  | \overrightarrow{Q}  |  =  \sqrt{ { 3}^{2} +  {(-2)}^{2}  +  {1}^{2}  }  \\  \\ \rm  | \overrightarrow{Q}  |  =  \sqrt{9+ 4+ 1}  \\  \\ \rm  | \overrightarrow{Q}  |  =  \sqrt{14}

Let  \rm \theta be the angle between  \rm \overrightarrow{P} &  \rm \overrightarrow{Q}

\rm \implies \overrightarrow{P}. \overrightarrow{Q} =   | \overrightarrow{P} |   | \overrightarrow{Q}  | cos \theta \\  \\  \rm \implies cos \theta  =  \dfrac{\overrightarrow{P}. \overrightarrow{Q} }{| \overrightarrow{P} |   | \overrightarrow{Q}  |}  \\  \\ \rm \implies \theta  =  {cos}^{ - 1}  ( \dfrac{\overrightarrow{P}. \overrightarrow{Q} }{| \overrightarrow{P} |   | \overrightarrow{Q}  |} ) \\   \\ \rm \implies \theta  =  {cos}^{ - 1} ( \dfrac{7 }{ \sqrt{14}  \times  \sqrt{14} } ) \\  \\ \rm \implies \theta  =  {cos}^{ - 1} ( \dfrac{7 }{ 14} ) \\  \\  \rm \implies \theta  =  {cos}^{ - 1} ( \dfrac{1 }{ 2} ) \\  \\  \rm \implies \theta  = {60}^{ \circ}

 \therefore  \boxed{\mathfrak{Angle \ between \ \overrightarrow{P} \ and \ \overrightarrow{Q} \ (\theta) = 60\degree}}

Answered by BrainlyShadow01
1

\huge{\boxed{\sf QuEsTIoN}}

Find the angle between p=2i+j+3k AMD Q=3i-2j+k

\huge{\boxed{\sf Answer}}

P = 2i + j + 3k ; Q = 3i - 2j + k

Now angle between ā and b be

cos-¹ ( 6 - 2 + 3 )

(14 × 14)

cos-¹ (7/14)

cos-¹ (1/2)

cos 60°

Hence Verified

Similar questions