Math, asked by nithya06052004, 10 months ago

find the angle between the curves 2y^2-9x=0,3x^2+4y=0 (in the 4th quandrant)
plssss ans fast​

Answers

Answered by sanjeevk28012
3

The angle between the curves is tan^{-1}(1.36)

Step-by-step explanation:

Given as :

The curve equation are

2 y² - 9 x = 0                   ...........1

Or,  x = \dfrac{2}{9}

And

3 x² + 4 y = 0                ............2

Put the value of x from eq 1 into eq 2

i.e  3 (\dfrac{2}{9} y²)² + 4 y = 0

Or, 3 × \dfrac{4}{81} y^{4} + 4 y = 0

Or,  y ( \dfrac{4}{27} y³  + 4 ) = 0

Or,  y = 0   ,  \dfrac{4}{27} y³  + 4 = 0

i.e   \dfrac{4}{27} y³  = - 4

Or, y³ = - 27

 y = - 3

Now, put the  value of y into eq 1

x = \dfrac{2}{9} × (-3)²

Or,  x = \dfrac{2}{9} × 9

∴   x = 2

So, The co-ordinate of given curves = (x , y) = ( 2 , - 3 )

Now,

Slope of curve 1 = m_1

i.e  \dfrac{dy}{dx}  = m_1

or,  \dfrac{d(2 y^{2}  - 9 x) }{dx} = 2 × 2 \dfrac{dy}{dx}  - 9 = 0

Or, 2 × 2 \dfrac{dy}{dx}  - 9 = 0

Or, 4 m_1 = 9

∴     m_1 = \dfrac{9}{4}

Slope of first curve = m_1 = \dfrac{9}{4}

Again

Slope of curve 2  = m_2

i.e  \dfrac{dy}{dx}  = m_2

Or, \dfrac{d(3x^{2}  + 4 y) }{dx} = 6 + 4 \dfrac{dy}{dx} = 0

i.e   6 + 4 \dfrac{dy}{dx} = 0

or,  4 \dfrac{dy}{dx} = - 6

Or,  m_2 = \dfrac{-3}{2}

Slope of second curve = m_2 = \dfrac{-3}{2}

Now,

Angle between curves

TanФ = \dfrac{-\dfrac{3}{2} -\dfrac{9}{4} }{1- (\dfrac{-3}{2} )(\dfrac{9}{4}) }

i.e TanФ = \dfrac{\dfrac{-13}{4} }{\dfrac{-19}{8} }

TanФ = \dfrac{26}{19}

i.e  Ф  = tan^{-1} (\dfrac{26}{19})

So, The angle between the curves =  Ф  = tan^{-1}(1.36)

Hence, The angle between the curves is tan^{-1}(1.36)  Answer

Similar questions