Math, asked by harinandyadav54321, 10 days ago

find the angle between the following lines x cos a + y sin a = p and x sin a - y cos a =q​

Answers

Answered by senboni123456
2

Step-by-step explanation:

Given lines are

 \tt{ \blue{L_{1} \colon \: x \: cos( \alpha )  + y \: sin( \alpha ) = p }} \\ \tt{ \blue{L_{2} \colon \: x \: sin( \alpha )   -  y \: cos( \alpha ) = q }}

It can be rewritten in slope form, which is

 \tt{ \blue{L_{1} \colon \:    y  =  - x \: cot( \alpha ) +   p \: cosec( \alpha ) }} \\ \tt{ \blue{L_{2} \colon \:     y  = x \: tan( \alpha ) -  q  \: sec( \alpha )}} \:  \:  \:  \:  \:  \:  \:  \:

So, slopes of the given lines are

 \sf{ \green{m_{1} =  -  cot( \alpha ) \:  \:  \:  \:  \: \:   \& \:  \:  \:  \:  \:  \: m_{2} =    tan( \alpha )  }} \\

Now, Angle between the given line is given by,

 \sf{ tan( \theta) =  \left|  \dfrac{m_{2} -m_{1} }{1 +  m_{1}m_{2} } \right| }

 \sf{ \implies tan( \theta) =  \left|  \dfrac{tan( \alpha)  + cot( \alpha) }{1  - 1  } \right| }

 \sf{ \implies tan( \theta) =  \left|  \dfrac{tan( \alpha)  + cot( \alpha) }{0 } \right| }

 \sf{ \implies tan( \theta) =   \infty }

 \sf{ \implies  \theta =   \dfrac{\pi}{2} }

Similar questions