Math, asked by allu62807, 30 days ago

Find the angle between the line x-2y+1=0 & 2x+6y-5=0​

Answers

Answered by amansharma264
5

EXPLANATION.

Angle between the line.

⇒ x - 2y + 1 = 0. - - - - - (1).

⇒ 2x + 6y - 5 = 0. - - - - - (2).

As we know that,

Slope of line = -a/b.

Slope of the line : x - 2y + 1 = 0.

⇒ M₁ = -(1)/-2 = 1/2.

Slope of the line : 2x + 6y - 5 = 0.

⇒ M₂ = -(2)/6 = -1/3.

As we know that,

⇒ tanθ = |m₁ - m₂/1 + m₁m₂|.

⇒ tanθ = |1/2 - (-1/3)/1 + (1/2)(-1/3)|.

⇒ tanθ = |1/2 + 1/3/1 - 1/6|.

⇒ tanθ = |3 + 2/6/6 - 1/6|.

⇒ tanθ = |5/6/5/6|.

⇒ tanθ = | 5/6 x 6/5 |.

⇒ tanθ = |1|.

⇒ tanθ = tan45°

θ = 45° = π/4.

                                                                                                                       

MORE INFORMATION.

The angle between two straight lines.

(1) = tanθ = |m₁ - m₂/1 + m₁m₂|.

(2) = Two lines are parallel if : m₁ = m₂.

(3) = Two lines are perpendicular if : m₁m₂ = - 1.

(4) = Two lines a₁x + b₁y + c₁ = 0   and  a₂x + b₂y + c₂ = 0 are coincident only and only if, a₁/a₂ = b₁/b₂ = c₁/c₂.

Similar questions