Math, asked by PragyaTbia, 1 year ago

Find the angle between the planes whose vector equations are \vec r.(2\hat i+2\hat j-3\hat k)=5 \ and \vec r.(3\hat i+3\hat j+5\hat k)=3

Answers

Answered by MaheswariS
0

Answer:

Angle between the given two planes is

\theta=cos^{-1}[\frac{-3}{\sqrt{17}\sqrt{43}}]

Step-by-step explanation:

Formula used:

The angle between the planes

\vec{r}.\vec{n_1}=q_1    and

\vec{r}.\vec{n_2}=q_2

is

cos\theta=\frac{\vec{n_1}.\vec{n_2}}{|\vec{n_1}||\vec{n_2}|}

Given Planes are

\vec{r}.(2\vec{i}+2\vec{j}-3\vec{k})=5\\\\\vec{r}.(3\vec{i}+3\vec{j}+5\vec{k})=3

comparing with

\vec{r}.\vec{n_1}=q_1\:and\:\vec{r}.\vec{n_2}=q_2

we get

\vec{n_1}=2\vec{i}+2\vec{j}-3\vec{k}\\\\\vec{n_2}=3\vec{i}+3\vec{j}+5\vec{k}\\\\\vec{n_1}.\vec{n_2}=6+6-15=-3\\\\|\vec{n_1}|=\sqrt{2^2+2^2+(-3)^2}\\\\|\vec{n_1}|=\sqrt{4+4+9}=\sqrt{17}\\\\|\vec{n_2}|=\sqrt{3^2+3^2+5^2}\\\\|\vec{n_2}|=\sqrt{9+9+25}=\sqrt{43}

Let \theta be the angle between the given two planes.

Then,

cos\theta=\frac{\vec{n_1}.\vec{n_2}}{|\vec{n_1}||\vec{n_2}|}\\\\cos\theta=\frac{-3}{\sqrt{17}\sqrt{43}}\\\\\theta=cos^{-1}[\frac{-3}{\sqrt{17}\sqrt{43}}]

Similar questions