Physics, asked by Anonymous, 1 year ago

Find the angle of projection at which the horizontal range and maximum height of a projectile are equal.

Answers

Answered by Anonymous
21

Answer:

\displaystyle \text{$\theta=\tan^{-1}(4)$}

Explanation:

Let projectile angle be θ .

Given :

Range ( R ) = Maximum Height ( H )

We have formula for Range

\displaystyle \text{$R=\frac{u^2\sin2\theta}{g} \ ..(i)$}

We also have for Height

\displaystyle \text{$H_{max}=\frac{u^2\sin^2\theta}{2g} \ ..(ii)$}

Given ( i )  and ( ii ) are equal

\displaystyle \text{$R=H_{max}$}\\\\\displaystyle \text{$\frac{u^2\sin2\theta}{g}=\frac{u^2\sin^2\theta}{2g}$}\\\\\displaystyle \text{$\frac{u^2\sin2\theta}{1}=\frac{u^2\sin^2\theta}{2}$}\\\\\displaystyle \text{$\frac{\sin2\theta}{1}=\frac{\sin^2\theta}{2}$}\\\\\displaystyle \text{$2=\frac{\sin^2\theta}{\sin2\theta}$}\\\\\displaystyle \text{We know that $\sin2\theta=2\sin\theta.\cos\theta$}\\\\\displaystyle \text{Rewrite $\sin^2\theta$ as $\sin\theta.\sin\theta$}

\displaystyle \text{$2=\frac{\sin\theta.\sin\theta}{2\sin\theta.\cos\theta}$}\\\\\displaystyle \text{$2=\frac{\sin\theta }{2\cos\theta}$}\\\\\displaystyle \text{$4=\frac{\sin\theta }{\cos\theta}$}\\\\\displaystyle \text{$\tan\theta=4$}\\\\\displaystyle \text{$\theta=\tan^{-1}(4)$}

Thus we get answer.

Similar questions