Math, asked by preetharman3023, 5 months ago

) Find the angle which the line √3x + y + 5 = 0 makes with the positive directi
x-axis.​

Answers

Answered by Anonymous
15

Given Equation,

 \sf \:  \sqrt{3} x + y + 5 = 0  \\  \\  \dashrightarrow \sf \: y =  -  \sqrt{3} x - 5 -  -  -  -  - (1)

Slope Intercept form of a line,

  \sf y = mx + c -  -  -  -  -  -  -  -  - (2)

On comparing (1) and (2),

 \sf \: m =  -  \sqrt{3}  \\  \\  \dashrightarrow \sf  \: tan \theta =  -  \sqrt{3}  \\  \\ \dashrightarrow \sf  \: tan \theta =  - tan \dfrac{\pi}{3}  \\  \\ \: \dashrightarrow \sf  \: tan \theta =  - tan \dfrac{\pi}{3}  \\  \\  \dashrightarrow \sf  \: tan \theta =   tan(\pi -  \dfrac{\pi}{3} ) \\  \\ \dashrightarrow \boxed{ \boxed{\sf  \: \theta =  \dfrac{2\pi}{3} }}


QueenOfStars: Well explained! :)
Answered by TheDarkPhoenix
39

Given:

  • Line \rm{ \sqrt{3} x + y + 5 = 0} makes with the positive directive X-Axis.

To Find:

  • Value of angle  \rm{ \theta} = ?

Solution:

We have the given equation,

 \dashrightarrow\bf{ \sqrt{3}  x + y + 5 = 0}  \\  \\  \dashrightarrow\bf{y =  -  \sqrt{3x}  - 5 \: .... \: (1)}

We know that the Slope Intercept form of a line is given by,

 \dashrightarrow\bf{y = mx + c \: .... \: (2)}

From (1) & (2),

 \dashrightarrow\bf{m =  \sqrt{3} } \\  \\ \dashrightarrow\bf{tan \theta  =  -  \sqrt{3} } \\  \\ \dashrightarrow\bf{tan \theta  =  -   \: tan \:  \frac{\pi}{3} } \\  \\ \dashrightarrow\bf{tan \theta  = tan \: (\pi -  \frac{\pi}{3} )} \\  \\ \dashrightarrow{\boxed{\sf{\red{ \theta =  \frac{2\pi}{3} }}}} \:  \bigstar


QueenOfStars: Fabulous brozo! :D
TheDarkPhoenix: Thank uh, Sistah!! ;)
Similar questions