Math, asked by komal88880, 3 months ago

find the answer of this question ​

Attachments:

komal88880: please give step by step explanation

Answers

Answered by Saby123
5

Solution :

Let us divide the field into several parts , we will find the area of each seperately .

Area of Quadrilateral ABDE :

=> Area of ∆ AFB + Area of BFD + Area of ADE

Area of ∆ AFB

> ½ × AF × BF

> ½ × 60 × 60

> 30 × 60

> 1800 m² .

Area of ∆ BFD :

> ½ × BF × DF

> ½ × 60 × 50

> 30 × 50

> 1500 m² .

Area of ∆ GDE :

> ½ × AD × GE

> ½ × [ 60 + 10 + 10 + 40 ] × 40

> 20 × 120

> 2400 m² .

Total area of figure :

> 1800 m² + 1500 m² + 2400 m²

> 5700 m².

This is the required answer.

_______________________________________________


Anonymous: Perfect !
Answered by Anonymous
0

Answer:

Required Answer :-

Area of the Quadrilateral

= Area of ABF + Area of BFD + Area of ADE

Now,

Area of ∆ ABF = ½ × AF × BF

 \sf \: Area  \: of  \bold{ \triangle }\: ABF =  \dfrac{1}{2}  \times 60 \times 60

 \sf \: Area  \: of \:   \triangle \:  ABF =  \dfrac{1}{ \cancel2}  \times \cancel{ 3600}

 \sf \pink{Area  \: of \:   \triangle \:  ABF = 1800 \:  {m}^{2} }

Now,

Area of BFD = ½ × BF × DF

 \sf \: Area  \: of \:  BFD =  \dfrac{1}{2}  \times 50 \times 60

 \sf Area \:  of  \: BFD =  \dfrac{1}{ \cancel2}  \times  \cancel{3000}

 \sf \pink{Area  \: of  \: BFD = 1500 \: m {}^{2} }

Area of GDE = ½ × AD × GE

 \sf \: Area  \: of \:  GDE  =  \dfrac{1}{2}  \times  \bigg \lgroup \: 60 + 10 + 10 + 40 \bigg \rgroup \times 40

 \sf \: Area \:  of \:  GDE  =  \dfrac{1}{2}  \times 120 \times 40

 \sf \: Area  \: of  \: GDE  =  \dfrac{1}{2}  \times 4800

 \sf  \pink{ Area \:  of  \: GDE  = 2400 \:  {m}^{2} }

Total area = 1800 + 1500 + 2400

Total area = 3300 + 2400

Total area = 5700 m²

Similar questions