Math, asked by ravdeep111, 20 days ago

find the answer
if  \: \: x \:  =  \:  3 + 2 \sqrt{2}  \:  \: then \: find \: the \: value \: of \: \: {x}^{2}  +  \frac{1}{ {x}^{2} }
please​

Answers

Answered by TYKE
2

Question :

If x = 3 + 2√2 , then find the value of x² + 1/x²

Solution :

If x = 3 + 2√2 then for 1/x we get

 \looparrowright \frac{1}{3 + 2 \sqrt{2} }

By rationalising the denominator we get

  \looparrowright \frac{1(3 - 2 \sqrt{2} )}{(3 + 2 \sqrt{2})(3 - 2 \sqrt{2}  )}

By applying formula (a + b)(a - b) = a² - b² we get

 \looparrowright \frac{3 - 2 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2} )}^{2} }

 \looparrowright \frac{3 - 2 \sqrt{2} }{9- 8}

 \looparrowright \frac{3 - 2 \sqrt{2} }{1}

 \looparrowright \frac{1}{x}  \rarr3 - 2 \sqrt{2}

Now as per the given we now need to simplify accordingly

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }

By putting the values

 \sf  \leadsto {(3  + 2 \sqrt{2} )}^{2}  +  {(3  -  2 \sqrt{2} )}^{2}

By applying formula :

  • (a + b)² = a² + 2ab + b² [For the L.H.S]

  • (a - b)² = a² - 2ab + b² [For the R.H.S]

  \sf \leadsto{(3)}^{2}  + 2 \times 3 \times 2 \sqrt{2}  +  {(2 \sqrt{2} )}^{2}  +  {(3)}^{2}  - 2 \times 3 \times 2 \sqrt{2}  +  {(2 \sqrt{2}) }^{2}

  \sf \leadsto{(3)}^{2}  +  \cancel{2 \times 3 \times 2 \sqrt{2}}  +  {(2 \sqrt{2} )}^{2}  +  {(3)}^{2}  - \cancel{ 2 \times 3 \times 2 \sqrt{2} } +  {(2 \sqrt{2}) }^{2}

 \sf \leadsto{(3)}^{2}  +  {(2 \sqrt{2} )}^{2}  +  {(3)}^{2}   +  {(2 \sqrt{2}) }^{2}

 \sf \leadsto9 + 8 + 9 + 8

 \sf \leadsto34

So the value of x² + 1/x² is 34

Similar questions