Math, asked by PragyaTbia, 1 year ago

Find the approximate value of \sqrt[3]{26.96}

Answers

Answered by MaheswariS
2

Answer:

\sqrt[3]{26.96}=2.99852\:(approx.)

Step-by-step explanation:

\sqrt[3]{26.96}

=(26.96)^\frac{1}{3}

=(27-0.04)^\frac{1}{3}

=(27)^\frac{1}{3}(1-\frac{0.04}{27})^\frac{1}{3}

=(3^3)^\frac{1}{3}(1-\frac{0.04}{27})^\frac{1}{3}

=3(1-\frac{0.04}{27})^\frac{1}{3}

Using, binomial theorem for rational index

\boxed{(1+x)^n=1+nx+\frac{n(n-1)}{2}+.......}

=3[1+\frac{1}{3}(-\frac{0.04}{27})+.............]\:\text{( neglecting the higher powers )}

=3-\frac{0.04}{27}

=3-\frac{4}{27*100}

=3-\frac{0.148}{100}

=3-0.00148

=2.99852\:(approximately)

Answered by ujalasingh385
1

Answer:

Approximate value is 2.99852

Step-by-step explanation:

\sqrt[3]{26.96}

= (26.96)^\frac{1}{3}

= (27-0.04)^\frac{1}{3}

= (27)^\frac{1}{3}(1-\frac{0.04}{27})^\frac{1}{3}

= (3^3)^\frac{1}{3}(1-\frac{0.04}{27})^\frac{1}{3}

= 3(1-\frac{0.04}{27})^\frac{1}{3}

Using binomial theorem for rational index

\boxed{(1+x)^n=1+nx+\frac{n(n-1)}{2}+.......}

= 3[1+\frac{1}{3}(-\frac{0.04}{27})+.............]\:\text{( neglecting the higher powers )}

= 3-\frac{0.04}{27}

= 3-\frac{4}{27*100}

= 3-\frac{0.148}{100}

= 3-0.00148

= 2.99852(approximately)

Approximate value is 2.99852

Similar questions