Math, asked by Anonymous, 1 month ago

Find the approximation of √97 using derivatives.

This is of application for derivative​

Answers

Answered by OM6918
1

97 is not a perfect square and hence its square root is not a whole number. √97 = 9.848857 (approx)

ANSWER BY OM

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:f(x) =  \sqrt{x} \:  \:  \:  \:  \:  \: where \: x = 100

So,

\rm :\longmapsto\:f(x + h) =  \sqrt{x + h} \:  \:  \:  \:  \:  \: where \: h =  -  \: 3

By using definition of differentiation, we have

\rm :\longmapsto\:f(x + h) = f(x) + h \: f'(x)

On substituting the values, we get

\rm :\longmapsto\: \sqrt{x + h} =  \sqrt{x} + h\dfrac{d}{dx} \sqrt{x}

\rm :\longmapsto\: \sqrt{x + h} =  \sqrt{x} + h \times  \dfrac{1}{2 \sqrt{x} }

On substituting x = 100, h = - 3

\rm :\longmapsto\: \sqrt{100 - 3} =  \sqrt{100}  - 3 \times  \dfrac{1}{2 \sqrt{100} }

\rm :\longmapsto\: \sqrt{97} = 10 - \dfrac{3}{20}

\rm :\longmapsto\: \sqrt{97} =  \dfrac{200 - 3}{20}

\rm :\longmapsto\: \sqrt{97} =  \dfrac{197}{20}

\rm :\longmapsto\: \sqrt{97} =  9.85

\bf\implies \:\boxed{ \tt{ \: \:   \sqrt{97}  \:  =  \: 9.85 \:  \: (approx.) \:  \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions