Math, asked by swati4871, 1 year ago

Find the arclength of the curve r(t)=⟨62√t,e6t,e−6t⟩r(t)=⟨62t,e6t,e−6t⟩, 0≤t≤10≤t≤1

Answers

Answered by wajeed810
0

The answer is e3e−3.

Recall that the arclength for parametric curves is:

L=ba(dxdt)2+(dydt)2dt

So,

dxdt=ete−t
dydt=−2

Now substituting:

L=30(ete−t)2+(−2)2dt
=30e2t−2+e−2t+4dt expand
=30e2t+2+e−2tdt simplify
=30(et+e−t)2dt factor
=30(et+e−t)dt simplify
=ete−t∣∣30 integrate
=e3e−3(e0e0) evaluate
=e3e3

Similar questions