Math, asked by keshavnaveen123, 2 months ago

find the are of the triangle whose vertices are (2,3),(-10,),(2,-4) is​

Answers

Answered by SachinGupta01
6

\bf \underline{ \underline{\maltese\:Given} }

\sf Vertices \: of \: the \: triangle \: are :

\sf\implies(2, 3)

\sf\implies (- 1, 0)

\sf\implies(2, - 4)

\bf \underline{\underline{\maltese\: To \: find }}

\sf We \: have \: to \: find \:the \: area \: of \: triangle.

\bf \underline{\underline{\maltese\: Solution}}

\bf Area \: of \: triangle =

 \underline{\boxed{ \sf \dfrac{1}{2}\ \times\ \bigg[x_1\bigg(y_2\ -\ y_3\bigg)\ +\ x_2\bigg(y_3\ -\ y_1\bigg)\ +\ x_3\bigg(y_1\ -\ y_2\bigg)\bigg]}}

\bf \underline{Where},

\implies \sf{x_1 = 2}

\implies \sf{x_2 = - 1}

\implies \sf{x_3= 2}

\implies \sf{y_1 = 3}

\implies \sf{y_2 = 0}

\implies \sf{y_3 = - 4}

\bf \underline{Now},

\sf Substitute \: the \: values,

\sf \dfrac{1}{2}\ \times\ \bigg[2\bigg(0\ -\ (-4)\bigg)\ +\ (- 1)\bigg((-4)\ -\ 3\bigg)\ +\ 2\bigg(3\ -\ 0\bigg)\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[2(4)\  - 1(-7)\ +\ 2(3)\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[ 8\ -\ (-7) +\ 6\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[ 8 +7 +\ 6\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[ 21\bigg]

\sf \dfrac{1}{2}\ \times21 =\dfrac{21}{2}

\underline{ \boxed{ \red{ \bf So, area \: of \: triangle \: is \:\dfrac{21}{2} \: square \: units. }}}

Similar questions