Math, asked by suraj19, 1 year ago

find the area between two parabolas x^2=4ay and y^2=4ax

Answers

Answered by 1RADHIKAA1
7
We have, y2 = 4ax ----------- (1) 
x2 = 4ay ------------------------ (2) 

(1) and (2) intersects


x = y2/4a (a > 0) 

=> (y2/4a)2 = 4ay 
=> y4 = 64a3
=> y4 – 64a3y = 0 
=> y[y3 – (4a)3] = 0 
=> y = 0, 4a 
 y = 0,  x = 0 and
when y = 4a, x = 4a. 

The points of intersection of (1) and (2) are O(0, 0)
and A(4a, 4a). 


= Area of the shaded region 
0∫4a(y1 – y2)dx 
0∫4a[√(4ax) – x2/4a]dx 
= [2√a.(x3/2)/(3/2) – (1/4a)(x3/3)]04a 
= 4/3√a(4a)3/2 – (1/12a)(4a)3 – 0 
= 32/3a2 – 16/3a


= 16/3a2 sq. units
Similar questions